
2024/03/19 05:17 (UTC) 1/3 Slackware Aarch64 and Virtualization

SlackDocs - https://docs.slackware.com/

Slackware Aarch64 and Virtualization

Virtualization on the Aarch64 architecture simplifies research, development, and testing. The goal of
this document is to aid the user to create a favorable environment without any complicated
requirements. The hope is that this will enable more Slackware ARM users to contribute to the project.
This guide targets the RockPro64, the Pinebook Pro, and the Honeycomb LX2K hardware models. This
same process may work on the Raspberry Pi 4, but remains untested.

Work in progress.

Software Requirements

Full installation of Slackware Aarch64
Qemu built with the aarch64 target
libvirt as the back end
virt-manager as the GUI for local and remote access
netcat-openbsd to enable remote connections to libvirt

SlackBuilds and Packages

The build scripts are here
Pre-built packages here.

In the future the pre-built packages will become outdated and you will need to rebuild the packages
with the included build scripts. The current package set was built on the Aarch64 port of Slackware-
current. The software is constantly upgraded in Slackware-current. What works now, may not work
tomorrow. It is recommended that the packages are rebuilt often as an exercise for the user.

You can use your favorite package manager for SlackBuilds.org to automate the build
installation. That is beyond the scope of this document.

The whole bundle can be downloaded from the Slackware.uk public mirror like so:

$ mkdir -p /tmp/slackware-aarch64-virtualization
$ cd /tmp/slackware-aarch64-virtualization
$ rsync -Paav slackware.uk::slackwarearm/people/brent/slackware-aarch64-
virtualization/ .

Then enter the directory if you are not already in it:

cd /tmp/slackware-aarch64-virtualization/virtualization-scripts

https://slackware.uk/slackwarearm/people/brent/slackware-aarch64-virtualization/virtualization-scripts/
https://slackware.uk/slackwarearm/people/brent/slackware-aarch64-virtualization/pkgs/

Last update:
2023/11/19
19:37 (UTC)

slackwarearm:virtualization_slackware_aarch64 https://docs.slackware.com/slackwarearm:virtualization_slackware_aarch64

https://docs.slackware.com/ Printed on 2024/03/19 05:17 (UTC)

Verify the SlackBuild scripts are all marked executable.

chmod -v +x arm/build */arm/build */*SlackBuild tools/refresh.source

Make sure you remove the vanilla Slackware package of netcat. It is named nc and
can be removed easily with removepkg. This package is swapped out for netcat-
openbsd to enable virt-manager and libvirt to communicate when virt-manager is
connected remotely to a virtual machine host system.

Remove stock netcat:

removepkg nc

To verify the checksum of existing source archives without having to download them again:

CHECK=1 REFRESH=0 ./tools/refresh.source

Output should look similar to:

spice-protocol-0.14.4.tar.xz: OK
spice-0.15.1.tar.bz2: OK
spice-gtk-0.42.tar.xz: OK
gtk-vnc-1.3.1.tar.xz: OK
lloyd-yajl-2.1.0-0-ga0ecdde.tar.gz: OK
libvirt-9.1.0.tar.xz: OK
libvirt-python-9.1.0.tar.gz: OK
libvirt-glib-4.0.0.tar.xz: OK
osinfo-db-tools-1.10.0.tar.xz: OK
osinfo-db-20230308.tar.xz: OK
libosinfo-1.10.0.tar.xz: OK
virt-manager-4.1.0.tar.gz: OK
libmd-1.1.0.tar.xz: OK
libbsd-0.11.7.tar.xz: OK
netcat-openbsd-7.3_1.tar.gz: OK
qemu-7.2.1.tar.xz: OK

Update the SlackBuilds using newer source archives by editing arm/build and the
download.info files in each sub directory. To download the source code for each build
script use the utility in the tools/ directory:

CHECK=0 REFRESH=1 ./tools/refresh.source

Execute the build script in the root of the tree:

./arm/build

2024/03/19 05:17 (UTC) 3/3 Slackware Aarch64 and Virtualization

SlackDocs - https://docs.slackware.com/

Then you wait. Depending on your system, it could be a significantly long time frame to wait. Each
package will be built and installed automatically. The build script will exit if a build fails or cannot be
installed/upgraded.

Post Installation

TODO: screen shots

Configure system to start the Libvirt daemon during system boot.

chmod -v +x /etc/rc.d/rc.libvirt /etc/rc.d/rc.local
vim /etc/rc.d/rc.local

Add in rc.local

if [-x /etc/rc.d/rc.libvirt]; then
 /etc/rc.d/rc.libvirt start
fi

To start the daemon without restarting your machine:

/etc/rc.d/rc.libvirt start

Manage Graphically

TODO: screen shots

Your virtual machine host can be a x86, x86_64, or aarch64. Other architectures were not tested. It
can be accessed remotely on your local network through the virt-manager graphical environment on
your Aarch64 machine. It is all interchangeably the same scenario for each architecture. On 32 bit
ARM, its possible to use just Virt-manager to access other machines running qemu virtual machines.

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/slackwarearm:virtualization_slackware_aarch64

Last update: 2023/11/19 19:37 (UTC)

https://docs.slackware.com/
https://docs.slackware.com/slackwarearm:virtualization_slackware_aarch64

	Slackware Aarch64 and Virtualization
	Software Requirements
	SlackBuilds and Packages
	Post Installation
	Manage Graphically

