
2024/03/19 15:34 (UTC) 1/7 Working with Filesystems

SlackDocs - https://docs.slackware.com/

Working with Filesystems

The Filesystem Hierarchy

Slackware Linux stores all of its files and directories under a single / directory, typically referred to as
“root”. This is in stark contract to what you may be familiar with in the form of Microsoft Windows.
Different hard disk partitions, cdroms, usb flash drives, and even floppy disks can all be mounted in
directories under /, but do not have anything like “drive letters”. The contents of these devices can
be found almost anywhere, but there are some sane defaults that Slackware sets up for you. For
example, cd-rw drives are most often found at /mnt/cd-rw. Here are a few common directories
present on nearly all Slackware Linux installations, and what you can expect to find there.

Table 11.1. Filesystem Layout

/ The root directory, under which all others exist
/bin Minimal set of binary programs for all users
/boot The kernel, initrd, and other requirements for booting Slackware
/etc System configuration files
/dev Collection of special files allowing direct access to hardware
/home User directories where personal files and settings are stored
/media Directory for auto-mounting features in DBUS/HAL
/mnt Places to temporarily mount removable media
/opt Directory where some (typicaly proprietary) software may be installed
/proc Kernel exported filesystem for process information
/root The root user's home directory
/sbin Minimal set of system or superuser binaries
/srv Site-specific data such as web pages served by this system
/sys Special kernel implimentation details
/tmp Directory reserved for temporary files for all users
/usr All non-essential programs, libraries, and shared files
/var Regularly changing data such as log files

Local Filesystem Types

The Linux kernel supports a wide variety of filesystems, which allows you to choose from a long list of
features to tailor to your particular need. Fortunately, most of the default filesystem types are
adequate for any needs you may have. Some filesystems are geared towards particular media. For
example, the iso9660 filesystem is used almost exclusively for CD and DVD media.

ext2

ext2 is the oldest filesystem included in Slackware Linux for storing data on hard disks. Compared to
other filesystems, ext2 is simplistic. It is faster than most others for reading and writing data, but
does not include any journaling capability. This means that after a hard crash, the filesystem must be

Last update: 2012/10/24 09:40 (UTC) slackbook:working_with_filesystems https://docs.slackware.com/slackbook:working_with_filesystems

https://docs.slackware.com/ Printed on 2024/03/19 15:34 (UTC)

exhaustively checked to discover and (hopefully) fix any errors.

ext3

ext3 is the younger cousin of ext2. It was designed to replace ext2 in most situations and shares
much the same code-base, but adds journaling support. In fact, ext3 and ext2 are so much alike that
it is possible to convert one to the other on the fly without lose of data. ext3 enjoys a lot of popularity
for these reasons. There are many tools available for recovering data from this filesystem in the event
of catastrophic hardware failure as well. ext3 is a good general purpose filesystem with journaling
support, but fails to perform as well as other journaling filesystems in specific cases. One pitfall to
ext3 is that the filesystem must still go through this exhaustive check every so often. This is done
when the filesystem is mounted, usually when the computer is booted, and causes an annoying delay.

ext4

ext4 is the latest in the ext series of filesystems. It was designed to build upon ext3 with new ideas on
what filesystems should do. While Slackware supports ext4, you should remember that this filesystem
is still very new (particularly in file system terms) and is under heavy development. If you require
stability over performance, you may wish to use a different filesystem such as ext3. With that said,
ext4 does boast some major improvements over ext3 in the performance arena, but many people
don't yet trust it for stable use.

reiserfs

reiserfs is one of the oldest journaling filesystems for the Linux kernel and has been supported by
Slackware for many years. It is a very fast filesystem particularly well suited for storing, retrieving,
and writing lots of small files. Unfortunately there are few tools for recovering data should you
experience a drive failure, and reiserfs partitions experience corruption more often than ext3.

XFS

XFS was contributed to the Linux kernel by SGI and is one of the best filesystems for working with
large volumes and large files. XFS uses more RAM than other filesystems, but if you need to work with
large files its performance there is well worth the penalty in memory usage. XFS is not particularly ill-
suited for desktop or laptop use, but really shines on a server that handles medium to large size files
all day long. Like ext3, XFS is a fully journaled filesystem.

JFS

JFS was contributed to the Linux kernel by IBM and is well known for its responsiveness even under
extreme conditions. It can span colossal volumes making it particularly well-suited for Network
Attached Storage (NAS) devices. JFS's long history and thorough testing make it one of the most
reliable journaling filesystems available for Linux.

2024/03/19 15:34 (UTC) 3/7 Working with Filesystems

SlackDocs - https://docs.slackware.com/

iso9660

iso9660 is a filesystem specifically designed for optical media such as CDs and DVDs. Since optical
disks are read-only media, the linux kernel does not even include write support for this filesystem. In
order to create an iso9660 filesystem, you must use user-land tools like mkisofs(8) or growisofs(8).

vfat

Sometimes you may need to share data between Windows and Linux computers, but can't transfer
the files over a network. Instead you require a shared hard drive partition or a USB flash drive. The
humble vfat filesystem is the best choice here since it is supported by the largest variety of operating
systems. Unfortuantely, being a Microsoft designed filesystem, it does not store permissions in the
same way as traditional Linux filesystems. This means that special options must be used to allow
multiple users to access data on this filesystem.

swap

Unlike other filesystems which hold files and directories, swap partitions hold virtual memory. This is
very useful as it prevents the system from crashing should all your RAM be consumed. Instead, the
kernel copies portions of the RAM into swap and frees them up for other applications to use. Think of
it as adding virtual memory to your computer, very slow virtual memory. swap is typically a fail-safe
and shouldn't be relied upon for continual use. Add more RAM to your system if you find yourself
using lots of swap.

Using mount

Now that we've learned what (some of) the different filesystems available in Linux are, it's time we
looked at how to use them. In order to read or write data on a filesystem, that filesystem must first be
mounted. To do this, we (naturally) use mount(8). The first thing we must do is decide where we want
the filesystem located. Recall that there are no such things are drive letters denoting filesystems in
Linux. Instead, all filesystems are mounted on directories. The base filesystem on which you install
Slackware is always located at / and others are always located in subdirectories of /. /mnt/hd is a
common place to temporarily locate a partition, so we'll use that in our first example. In order to
mount a filesystem's contents, we must tell mount what kind of filesystem we have, where to mount
it, and any special options to use.

darkstar:~# mount -t ext3 /dev/hda3 /mnt/hd -o ro

Let's disect this. We have an ext3 filesystem located on the third partition of the first IDE device, and
we've decided to mount its contents on the directory /mnt/hd. Additionally, we have mounted it read-
only so no changes can be made to these contents. The [-t ext3] argument tells mount what type of
filesystem we are using, in this case it is ext3. This lets the kernel know which driver to use. Often
mount can determine this for itself, but it never hurts to explicitly declare it. Second, we tell mount
where to locate the filesystem's contents. Here we've chosen /mnt/hd. Finally, we must decide what
options to use if any. These are declared with the [-o] argument. A short-list of the most common
options follows.

Last update: 2012/10/24 09:40 (UTC) slackbook:working_with_filesystems https://docs.slackware.com/slackbook:working_with_filesystems

https://docs.slackware.com/ Printed on 2024/03/19 15:34 (UTC)

Table 11.2. Common mount options

ro read-only
rw read-write (default)
uid user to own the contents of the filesystem
gid group to own the contents of the filesystem
noexec prevent execution of any files on the filesystem
defaults sane defaults for most filesystems

If this is your first Linux installation, the only options you typically need to be concerned about are ro
and rw. The exception to this rule comes when you are dealing with filesystems that don't handle
traditional Linux permissions such as vfat or NTFS. In those cases you'll need to use the uid or gid
options to allow non-root users access to these filesystems.

darkstar:~# mount -t vfat /dev/hda4 /mnt/hd -o uid=alan

But Alan, that's appalling! I don't want to have to tell mount what filesystem or options to use
everytime I load a CD. It should be easier than that. Well thankfully, it is. The /etc/fstab file
contains all this information for filesystems that the installer sets up for you, and you can make
additions to it as well. fstab(5) looks like a simple table containing the device to mount along with its
filesystem type and optional arguments. Let's take a look.

darkstar:~# cat /etc/fstab
/dev/hda1 / reiserfs defaults 1 1
/dev/hda2 /home reiserfs defaults 1 2
/dev/hda3 swap swap defaults 0 0
/dev/cdrom /mnt/cdrom auto noauto,owner,ro,users 0 0
/dev/fd0 /mnt/floppy auto noauto,owner 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
proc /proc proc defaults 0 0

If you have an entry in fstab for your filesystem, you need only tell mount the device node or the
mount location.

darkstar:~# mount /dev/cdrom
darkstar:~# mount /home

One final use for mount is to tell you what filesystems are currently mounted and with what options.
Simply run mount without any arguments to display these.

Network Filesystems

In addition to local filesystems, Slackware supports a number of network filesystems as both client
and server. This allows you to share data between multiple computers transparently. We'll discuss the
two most common: NFS and SMB.

2024/03/19 15:34 (UTC) 5/7 Working with Filesystems

SlackDocs - https://docs.slackware.com/

NFS

NFS is the Network File System for Linux as well as several other common operating systems. It has
modest performance but supports the full range of permissions for Slackware. In order to use NFS as
either a client or a server, you must run the remote procedure call daemon. This is easily
accomplished by setting the /etc/rc.d/rc.rpc file executable and telling it to start. Once it has
been set executable, it will run automatically every time you boot into Slackware.

darkstar:~# chmod +x /etc/rc.d/rc.rpc
darkstar:~# /etc/rc.d/rc.rpc start

Mounting an NFS share is little different than mounting a local filesystem. Rather than specifying a
local device, you must tell mount the domain name or IP address of the NFS server and the directory
to mount with a colon between them.

darkstar:~# mount -t nfs darkstar.example.com:/home /home

Running an NFS server is a little bit different. First, you must configure each directory to be exported
in the /etc/exports file. exports(5) contains information about what directories will be shared,
who they will be shared with, and what special permissions to grant or deny.

See exports(5) for a description.
This file contains a list of all directories exported to other computers.
It is used by rpc.nfsd and rpc.mountd.

/home/backup 192.168.1.0/24(sync,rw,no_root_squash)

The first column in exports is a list of the files to be exported via NFS. The second column is a list of
what systems may access the export along with special permissions. You can specify hosts via
domain name, IP address, or netblock address (as I have here). Special permissions are always a
parenthetical list. For a complete list, you'll need to read the man page. For now, the only special
option that matters is no_root_squash. Usually the root user on an NFS client cannot read or write an
exported share. Instead, the root user is “squashed” and forced to act as the nobody user.
no_root_squash prevents this.

You'll also need to run the NFS daemon. Starting and stopping NFS server support is done with the
/etc/rc.d/rc.nfsd rc script. Set it executable and run it just like we did for rc.rpc and you are
ready to go.

SMB

SMB is the Windows network file-sharing protocol. Connecting to SMB shares (commonly called samba
shares) is fairly straight forward. Unfortuantely, SMB isn't as strongly supported as NFS. Still, it offers
higher performance and connectivity with Windows computers. For these reasons, SMB is the most
common network file-sharing protocol deployed on local networks. Exporting SMB shares from
Slackware is done through the samba daemon and configured in smb.conf(5). Unfortunately
configuring samba as a service is beyond the scope of this book. Check online for additional
documentation, and as always refer to the man page.

Last update: 2012/10/24 09:40 (UTC) slackbook:working_with_filesystems https://docs.slackware.com/slackbook:working_with_filesystems

https://docs.slackware.com/ Printed on 2024/03/19 15:34 (UTC)

Thankfully mounting an SMB share is easy and works almost exactly like mounting an NFS share. You
must tell mount where to find the server and what share you wish to access in exactly the same way.
Additionally, you must specify a username and password.

darkstar:~# mount -t cifs //darkstar/home /home -o
username=alan,password=secret

You may be wondering why the filesystem type is cifs instead of smbfs. In older versions of the Linux
kernel, smbfs was used. This has been deprecated in favor of the better performing and more secure
general purpose cifs driver.

All SMB shares require the username and password arguments. This can create a security problem if
you wish to place your samba share in fstab. You may avoid this problem by using the credentials
argument. credentials points to a file which contains the username and password information. As long
as this file is safely guarded and readable only by root, the likelyhood that your authentication
credentials will be compromised is lessened.

darkstar:~# echo "username=alan" > /etc/creds-home
darkstar:~# echo "password=secret" >> /etc/creds-home
darkstar:~# mount -t cifs //darkstar/home -o credentials=/etc/creds-home

Chapter Navigation

Previous Chapter: Filesystem Permissions

Next Chapter: vi

Sources

Original source: http://www.slackbook.org/beta

Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook, filesystem, network filesystems, nfs, smb, mount

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/slackbook:working_with_filesystems

Last update: 2012/10/24 09:40 (UTC)

https://docs.slackware.com/slackbook:filesystem_permissions
https://docs.slackware.com/slackbook:vi
http://www.slackbook.org/beta
https://docs.slackware.com/tag:slackbook?do=showtag&tag=slackbook
https://docs.slackware.com/tag:filesystem?do=showtag&tag=filesystem
https://docs.slackware.com/tag:network_filesystems?do=showtag&tag=network_filesystems
https://docs.slackware.com/tag:nfs?do=showtag&tag=nfs
https://docs.slackware.com/tag:smb?do=showtag&tag=smb
https://docs.slackware.com/tag:mount?do=showtag&tag=mount
https://docs.slackware.com/
https://docs.slackware.com/slackbook:working_with_filesystems

2024/03/19 15:34 (UTC) 7/7 Working with Filesystems

SlackDocs - https://docs.slackware.com/

	Working with Filesystems
	The Filesystem Hierarchy
	Local Filesystem Types
	ext2
	ext3
	ext4
	reiserfs
	XFS
	JFS
	iso9660
	vfat
	swap

	Using mount
	Network Filesystems
	NFS
	SMB

	Chapter Navigation
	Sources

