2024/03/17 22:03 (UTC) 1/7 Networking

Networking

Netconfig

Computers aren't very interesting on their own. Sure, you can install games on them, but that just
turns them into glorified entertainment consoles. Today, computers need to be able to talk to one
another; they need to be networked. Whether you're installing a business network with hundreds or
thousands of computers or just setting up a single PC for Internet access, Slackware is simple and
easy. This chapter should teach you how to setup typical wired networks. Common wireless setup will
be thoroughly discussed in the next section, but much of what you read here will be applicable there
as well.

There are many different ways to configure your computer to connect to a network or the Internet,
but they fall into two main categories: static and dymanic. Static addresses are solid; they are set
with the understanding that they will not be changed, at least not anytime soon. Dynamic addresses
are fluid; the assumption is that the address will change at some time in the future. Typically any sort
of network server requires a static address simply so other machines will know where to contact it
when they need services. Dynamic addresses tend to be used for workstations, Internet clients, and
any machine that doesn't require a static address for any reason. Dynamic addresses are more
flexible, but present complications of their own.

There are many different kinds of network protocols that you might encounter, but most people will
only ever need to deal with Internet Protocol (IP). For that reason, we'll focus exclusively on IP in this
book.

Manual Configuration

Ok, so you've installed Slackware, you've setup a desktop, but you can't get it to connect to the
Internet or your business's LAN (local area network), what do you do? Fortunately, the answer to that
question is simple. Slackware includes a number of tools to configure your network connection. The
first we will look at is the very powerful ifconfig(8), which is used to setup or modify the configuration
of the most common hardware for connecting to networks: a Network Interface Card (NIC or Ethernet
Card). ifconfig is an incredibly powerful tool capable of doing much more than setting IP addresses.
For a complete introduction, you should read its man page. For now, we're just going to use it to
display and change the network addresses of some ethernet controllers.

darkstar:~# ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:699 errors:0 dropped:0 overruns:0 frame:0
TX packets:699 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:39518 (38.5 KiB) TX bytes:39518 (38.5 KiB)

SlackDocs - https://docs.slackware.com/

Last update: 2012/11/21 02:20 (UTC) slackbook:network https://docs.slackware.com/slackbook:network

wlan0O Link encap:Ethernet HWaddr 00:1c:b3:ba:ad:4c
inet addr:192.168.1.198 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::21c:b3ff:feba:ad4c/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1630677 errors:0 dropped:0 overruns:0 frame:0
TX packets:1183224 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1627370207 (1.5 GiB) TX bytes:163308463 (155.7 MiB)

wmaster®@ Link encap:UNSPEC HWwaddr 00-1C-B3-BA-
AD-4C-00-00-00-00-00-00-00-00-00-00
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

As you can clearly see here, when run without any arguments, ifconfig will display all the information
it has on all the ethernet cards (and wireless ethernet cards) present on your system. The above
represents a typical wireless connection from my laptop, so don't be afraid if what you see on your
system doesn't match. If you don't see any ethX or wlanX interfaces though, the interface may be
down. To show all currently present NICs whether they are “up” or “down”, simply pass the -a
argument.

darkstar:~# ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:19:e3:45:90:44
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:122780 errors:0 dropped:0 overruns:0 frame:0
TX packets:124347 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:60495452 (57.6 MiB) TX bytes:17185220 (16.3 MiB)
Interrupt:16

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:699 errors:0 dropped:0 overruns:0 frame:0
TX packets:699 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:39518 (38.5 KiB) TX bytes:39518 (38.5 KiB)

wlan0O Link encap:Ethernet HWaddr 00:1c:b3:ba:ad:4c
inet addr:192.168.1.198 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::21c:b3ff:feba:ad4c/4 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1630677 errors:0 dropped:0 overruns:0 frame:0
TX packets:1183224 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1627370207 (1.5 GiB) TX bytes:163308463 (155.7 MiB)

https://docs.slackware.com/ Printed on 2024/03/17 22:03 (UTC)

2024/03/17 22:03 (UTC) 3/7 Networking

wmaster® Link encap:UNSPEC HWwaddr 00-1C-B3-BA-
AD-4C-00-00-00-00-00-00-00-00-00-00
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Notice that the ethQ interface is now listed among the returns. ifconfig can also change the current
settings on a NIC. Typically, you would need to change the IP address and subnet mask, but you can
change virtually any parameters.

darkstar:~# ifconfig eth® 192.168.1.1 netmask 255.255.255.0

darkstar:~# ifconfig ethO

eth0 Link encap:Ethernet HWaddr 00:19:e3:45:90:44
inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:122780 errors:0 dropped:0 overruns:0 frame:0
TX packets:124347 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:60495452 (57.6 MiB) TX bytes:17185220 (16.3 MiB)
Interrupt:16

If you look carefully, you'll notice that the interface now has the 192.168.1.1 IP address and a
255.255.255.0 subnet mask. We've now setup the basics for connecting to our network, but we still
need to setup a default gateway and our DNS servers. In order to do that, we'll need to look at a few
more tools.

Next on our stop through networking land is the equally powerful route(8). This tool is responsible for
modifying the Linux kernel's routing table which affects all data transmission on a network. Routing
tables can become immensely complex or they can be straight-forward and simple. Most users will
only ever need to setup a default gateway, so we'll show you how to do that here. If for some reason
you need a more complex routing table, you would be well advised to read the entire man page for
route as well as consulting other sources. For now, let's take a look at our routing table immediately
after setting up ethO.

darkstar:~# route
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use
Iface

192.168.1.0 & 255.255.255.0 U 0 0 0 etho
loopback * 255.0.0.0 U 0 0 0 lo

| won't explain everything here, but the general information should be easy to pick up if you're
familiar with networking at all. The Destination and Genmask fields specify a range of IP addresses to
match. If a Gateway is defined, information in the form of packets will be sent to that host for
forwarding. We also specify an interface in the final field that the information should traverse. Right
now, we can only communicate with computers with addresses between 192.168.1.0 and
192.168.1.255 and ourselves through the loopback interface, a type of virtual NIC that is used for
routing information from this computer to itself. In order to reach the rest of the world, we'll need to
setup a default gateway.

SlackDocs - https://docs.slackware.com/

Last update: 2012/11/21 02:20 (UTC) slackbook:network https://docs.slackware.com/slackbook:network

darkstar:~# route add default gw 192.168.1.254
darkstar:~# route
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use
Iface

192.168.1.0 & 255.255.255.0 U 0 0 0 etho
loopback & 255.0.0.0 U 0 0 0 lo
default 192.168.1.254 0.0.0.0 UG 0 0 0 etho

You should immediately notice the addition of a default route. This specifies what router should be
used to reach any addresses that aren't specified elsewhere in our routing table. Now, when we try to
connect to say, 64.57.102.34, the information will be sent to 192.168.1.254 which is responsible for
delivering the data for us. Unfortunately, we're still not quite through. We need some way of
converting domain names like slackware.com into IP addresses that the computer can use. For that,
we need to make use of a DNS server.

Fortunately, setting up your computer to use an external (or even an internal) DNS server is very
easy. You'll need to use your favorite text editor and open the /etc/resolv. conf file. Don't ask me
what happened to the e. On my computer, resolv. conf looks like this.

/etc/resolv.conf
search lizella.net
nameserver 192.168.1.254

Many users won't need the search line. This is used to map hostnames to domain names. Basically, if |
attempt to connect to “barnow!”, the computer knows to look for “barnowl.lizella.net” thanks to this
search line. We're mainly interested in the nameserver line. This tells Slackware what domain name
servers (DNS) to connect to. Generally speaking, these should always be specified by IP address. If
you know what DNS servers you should use, you can just add them one at a time to individual
nameserver lines. In fact, | don't know of any practical limit to the number of nameservers that can be
specified in resolv. conf, so add as many as you like. Once this is done, you should be able to
communicate with other hosts via their fully qualified domain name.

But Alan! That's a lot of hard work! | don't want to do this time and again for dozens or even hundreds
of machines. You're absolutely right, and that's why smarter people than you and me created DHCP.
DHCP stands for Dynamic Host Control Protocol and is a method for automatically configuring
computers with unique IP addresses, netmasks, gateways, and DNS servers. Most of the time, you'll
want to use DHCP. The majority of wireless routers, DSL or cable modems, even firewalls all have
DHCP servers to can make your life much easier. Slackware includes two main tools for connecting to
an exising DHCP server and can even act as a DHCP server for other computers. For now though,
we're just going to look at DHCP clients.

First on our list is dhcpcd(8), part of the ISC DHCP utilities. Assuming your computer is physically
connected to your network, and that you have an operating DHCP server on that network, you can
configure your NIC in one shot.

darkstar:~/ dhcpcd eth0
If everything went according to plan, your NIC should be properly configured, and you should be able

to communicate with other computers on your network, and with the Internet at large. If for some
reason, dhcpcd fails, you may want to try dhclient(8). dhclient is an alternative to dhcpcd and

https://docs.slackware.com/ Printed on 2024/03/17 22:03 (UTC)

2024/03/17 22:03 (UTC) 5/7 Networking

works in basically the same way.

darkstar:~/ dhclient eth@

Listening on LPF/eth0/00:1c:b3:ba:ad:4c

Sending on LPF/eth0/00:1c:b3:ba:ad:4c

Sending on Socket/fallback

DHCPREQUEST on eth® to 255.255.255.255 port 67
DHCPACK from 192.168.1.254

bound to 192.168.1.198 -- renewal in 8547 seconds.

Why does Slackware include two DHCP clients? Sometimes a particular DHCP server may be broken
and not respond well to either dhcpcd or dhclient. In those cases, you can fall back to the other
DHCP client in hopes of getting a valid response from the server. Traditionally, Slackware uses
dhcpcd, and this works in the vast majority of cases, but it may become necessary at some point for
you to use dhclient instead. Both are excellent DHCP clients, so use whichever you prefer.

Automatic Configuration with rc.inetl.conf

Manually configuring interfaces is an important skill to have, but it can become tedious. No one wants
to manually setup their Internet connection every time the system boots. More importantly, you may
not always have physical access to the machine when it boots. Slackware makes it easy to
automatically configure ethernet (and wireless) cards at system startup with
/etc/rc.d/rc.inetl.conf. For now, we're going to focus on traditional wired ethernet
networking; the next chapter will discuss various wireless options.

rc.inetl.conf is an incredibly powerful configuration file, capable of configuring most of your
network cards automatically when Slackware is started. The file is filled with useful comments, but
there is also a man page that more thoroughly discusses its use. To begin, we're going to look at
some of the options used on one of my personal machines.

Config information for ethO:
IPADDR[0]="192.168.1.250"
NETMASK[=]"255.255.255.0"

USE DHCP[O]=""
DHCP_HOSTNAME[O]=""

Some lines ommitted.
GATEWAY="192.168.1.254"

This represents most of the information necessary to configure a static IP address on a single ethernet
controller. netconfig will usually fill in these values for a single ethernet device for you. If you have
multiple network cards in your machine and need all of them activated automatically at boot time,
then you'll need to edit or add additional entries into this file in the same manner as above. First, let
me go over some of the basics.

As you may have already guessed, IPADDR[n] is the Internet Protocol Address for the n network
interface card. Typically, n corrosponds to eth0, ethl, and so on, but this isn't always the case. You
can specify these values to pertain to a different network controller with the IFNAME[n] variable, but
we will reserve that for wireless networking, as it more commonly pertains to wireless network
controllers.

SlackDocs - https://docs.slackware.com/

https://docs.slackware.com/slackbook:wifi

Last update: 2012/11/21 02:20 (UTC) slackbook:network https://docs.slackware.com/slackbook:network

Likewise, NETMASK[n] is the subnet mask to use for the network controller. If these lines are left
empty, then static IP addresses will not be automatically assigned to this network controller. The
USE_DHCP[n] variable tells Slackware (naturally) to use DHCP to configure the interface.
DHCP_HOSTNAME[n] is rarely used, but some DHCP servers may require it. In that case, it must be
set to a valid hostname. Finally, we come to the GATEWAY variable. It is actually set lower in the file
than it appears in my example, and it controls the default gateway to use. You may be wondering why
there is no GATEWAY[n] variable. The answer to that lies in how Internet Protocol works. | won't go
into an in-depth discussion on that subject, but suffice it to say that there is only ever one default
route that a computer can use no matter how many interfaces are attached to it.

If you need to use static IP addressing, you will have to obtain a unique static IP address and the
subnet mask for the interface, as well as the default gateway address, and enter those here. There is
no place to enter DNS information in rc.inetl. conf, so DNS servers will have to be manually
placed into resolv.conf as discussed in Manual Configuration. Of course, if you use netconfig, this
will be handled for you by that program. Now let's take a look at another interface on my computer.

Config information for ethl:

IPADDR[1]=""

NETMASK[1]=""

USE DHCP[1]="yes"

DHCP HOSTNAME[1]=""

Here | am telling Slackware to configure ethl using DHCP. | do not need to set the IPADDR[1] or

NETMASKI[1] variables when using DHCP (in fact, if they are set, they will be ignored). Slackware will
happily contact a DHCP server as soon as the machine begins to boot.

Chapter Navigation

Previous Chapter: Emacs

Next Chapter: Wireless Networking

Sources

e Original source: http://www.slackbook.org/beta

e Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook, networking, netconfig, dhcpcd

https://docs.slackware.com/ Printed on 2024/03/17 22:03 (UTC)

https://docs.slackware.com/slackbook:emacs
https://docs.slackware.com/slackbook:wifi
http://www.slackbook.org/beta
https://docs.slackware.com/tag:slackbook?do=showtag&tag=slackbook
https://docs.slackware.com/tag:networking?do=showtag&tag=networking
https://docs.slackware.com/tag:netconfig?do=showtag&tag=netconfig
https://docs.slackware.com/tag:dhcpcd?do=showtag&tag=dhcpcd

2024/03/17 22:03 (UTC) 777 Networking

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/slackbook:network

Last update: 2012/11/21 02:20 (UTC)

SlackDocs - https://docs.slackware.com/

https://docs.slackware.com/
https://docs.slackware.com/slackbook:network

	Networking
	Netconfig
	Manual Configuration
	Automatic Configuration with rc.inet1.conf

	Chapter Navigation
	Sources

