
2024/03/18 19:31 (UTC) 1/6 Set up SYSLINUX as boot loader on UEFI based hardware

SlackDocs - https://docs.slackware.com/

Set up SYSLINUX as boot loader on UEFI
based hardware

SYSLINUX is a boot loader that loads Linux (among other things) from FAT filesystem. The Syslinux
Project, of which SYSLINUX the boot loader is a part, contains also ISOLINUX, EXTLINUX and PXELINUX,
basically its variants to boot from optical media, ext2/3/4, Btrfs, XFS, UFS/FFS and NTFS or from
network.

UEFI support seems to have been added in version 6 of SYSLINUX, while Slackware comes with
version 4, which means it can not be set up during Slackware installation, unless one prepares
SYSLINUX files on another machine.

Why SYSLINUX

That being said, why bother with SYSLINUX? A couple of reasons:

LILO/ELILO is reportedly no longer maintained, the time may come we will have to switch to
something else.
Learning SYSLINUX may be worthwhile, because aside from serving as LILO/ELILO replacement,
it can do many other things (e.g. PXE)
Compared to GRUB, it is, well, less humongous and intimidating. After all, configuration files
resemble those of LILO/ELILO.

Why UEFI

It is not as though there is some choice; machines nowadays are UEFI. One can, however, choose to
set UEFI to so called “CSM” or sometimes “Legacy” mode. In this mode, UEFI acts as BIOS, i.e. reads
the first sector (MBR) of a hard drive and loads and executes non-UEFI boot loader such as LILO from
there. As opposed to UEFI in, say, UEFI mode, when it reads, loads and executes UEFI-aware boot
loader from EFI boot partition.

Frankly, there are no compelling reasons not to use CSM (note that it is possible to use GPT partitions
without UEFI). On the contrary, there are reasons to avoid UEFI booting, because:

On some machines, it is not possible to turn off secure boot without also turning off UEFI
booting (i.e. without turning on CSM).
On some machines, it is possible to turn off secure boot, but anything but what came with the
machine will not boot anyway.
On some machines, UEFI tries really hard to boot Windows and ignores or resets boot order.
On some machines, installing Linux in UEFI mode may brick the machine.

But, as with LILO, the day may come we will need to move on.

http://www.syslinux.org/wiki/index.php?title=The_Syslinux_Project
http://www.syslinux.org/wiki/index.php?title=The_Syslinux_Project
http://docs.slackware.com/howtos:slackware_admin:installing_with_gpt_without_uefi
http://docs.slackware.com/howtos:slackware_admin:installing_with_gpt_without_uefi

Last
update:
2016/08/18
23:53
(UTC)

howtos:slackware_admin:set_up_syslinux_as_boot_loader_on_uefi_based_hardware https://docs.slackware.com/howtos:slackware_admin:set_up_syslinux_as_boot_loader_on_uefi_based_hardware

https://docs.slackware.com/ Printed on 2024/03/18 19:31 (UTC)

Installation

There are basically two steps: first, preferably before you even install Slackware, partition the disk
using GPT and create EFI boot partition, second, compile and install SYSLINUX.

But before you begin:

back up your data, if you have anything of value on any of drives in the machine
boot to UEFI setup (“BIOS”) and verify that boot method is set to “UEFI”, not “CMS” or “Legacy”
and also that Secure Boot is turned off

Create EFI Boot Partition

It is the place where UEFI will look for a boot loader. Several tools can be used to partition a drive and
create EFI boot partition,:

cfdisk (new versions; older do just DOS partitions)
gdisk, an interactive tool and GPT counterpart to fdisk
cgdisk, a menu-based tool and GPT counterpart to cfdisk
sgdisk, apparently scriptable version of gdisk

Let's assume you have empty 10GB drive /dev/sda.

Just in case, erase all previous MBR or GPT partitions.

sgdisk -Z /dev/sda

Verify the drive is clean.

gdisk -l /dev/sda
GPT fdisk (gdisk) version 1.0.0

Partition table scan:
 MBR: not present
 BSD: not present
 APM: not present
 GPT: not present

Creating new GPT entries.
Disk /dev/sda: 20971520 sectors, 10.0 GiB
Logical sector size: 512 bytes
Disk identifier (GUID): 8C026A41-F188-4521-A72C-D2B826EAA1D1
Partition table holds up to 128 entries
First usable sector is 34, last usable sector is 20971486
Partitions will be aligned on 2048-sector boundaries
Total free space is 20971453 sectors (10.0 GiB)

Number Start (sector) End (sector) Size Code Name

https://en.wikipedia.org/wiki/GUID_Partition_Table

2024/03/18 19:31 (UTC) 3/6 Set up SYSLINUX as boot loader on UEFI based hardware

SlackDocs - https://docs.slackware.com/

Partition the drive (using sgdisk or any above mentioned tool). Three partitions will be created,
one for EFI, one for data and one for swap.

sgdisk -n 1:0:+512M /dev/sda
sgdisk -n 2:0:+9G /dev/sda
sgdisk -n 3 /dev/sda

Do not forget to set correct partition codes. EFI boot partitions has code 'ef00'.

sgdisk -t 1:ef00 /dev/sda
sgdisk -t 2:8300 /dev/sda
sgdisk -t 3:8200 /dev/sda

Verify layout.

gdisk -l /dev/sda
GPT fdisk (gdisk) version 1.0.0

Partition table scan:
 MBR: protective
 BSD: not present
 APM: not present
 GPT: present

Found valid GPT with protective MBR; using GPT.
Disk /dev/sda: 20971520 sectors, 10.0 GiB
Logical sector size: 512 bytes
Disk identifier (GUID): 3F2101FB-0D6B-481F-98B9-1C6621DB0981
Partition table holds up to 128 entries
First usable sector is 34, last usable sector is 20971486
Partitions will be aligned on 2048-sector boundaries
Total free space is 2014 sectors (1007.0 KiB)

Number Start (sector) End (sector) Size Code Name
 1 2048 1050623 512.0 MiB EF00
 2 1050624 19924991 9.0 GiB 8300
 3 19924992 20971486 511.0 MiB 8200

Create FAT32 filesystem on EFI boot partition.

mkfs.vfat -F 32 /dev/sda1

That is pretty much it for EFI boot partition. You can do whatever you like with /dev/sda2 (RAID, LUKS,
LVM, any filesystem) and install Slackware there, but leave EFI partition alone, that partition needs to
be unencrypted and FAT32 formatted.

Set up SYSLINUX

Compilation

Last
update:
2016/08/18
23:53
(UTC)

howtos:slackware_admin:set_up_syslinux_as_boot_loader_on_uefi_based_hardware https://docs.slackware.com/howtos:slackware_admin:set_up_syslinux_as_boot_loader_on_uefi_based_hardware

https://docs.slackware.com/ Printed on 2024/03/18 19:31 (UTC)

Download sources and compile.

$ unxz -c syslinux-6.03.tar.xz | tar -x
$ cd syslinux-6.03/
$ make
$ make INSTALLROOT=/some/where install

Set up boot loader

Now copy the boot loader and a few modules, as well as kernel and initrd to EFI boot partition created
earlier. Let's asssume /dev/sda1 is mounted as /boot/efi.

Copy the boot loader and a module for loading Linux. That is the bare minimum. And double
check you are copying efi64 files.

cd /boot/efi
mkdir EFI
mkdir EFI/SYSLINUX
cd EFI/SYSLINUX
cp /some/where/usr/share/syslinux/efi64/syslinux.efi .
cp /some/where/usr/share/syslinux/efi64/ldlinux.e64 .

Copy some other modules, e.g. for creating cute boot menu. For full list of modules and
dependencies, see the list.

cp /some/where/usr/share/syslinux/efi64/libutil.c32 .
cp /some/where/usr/share/syslinux/efi64/menu.c32 .

Create configuration file /boot/efi/EFI/SYSLINUX/syslinux.cfg. Bellow is an example of simple
boot menu with two items.

TIMEOUT 100 tells the boot loader to wait 100 hundredths of second, i.e. 10 seconds for
user input.
If user selects nothing within 10 seconds, whatever is set as DEFAULT will be launched.
The first menu entry is Slackware 14.2.

LABEL is a name that can be used for DEFAULT.
MENU LABEL is a description.
LINUX vmlinuz-huge-4.4.14 tells the boot loader to boot kernel vmlinuz-4.4.14
from the same directory (i.e. EFI\SYSLINUX\vmlinuz-4.4.14)
APPEND /dev/vgroot/V_ROOT 4 is kernel command line telling the kernel to
mount /dev/vgroot/V_ROOT as / (root). Obviously that is a logical volume in this
case, but it could be e.g. plain /dev/sda2. The second argument, '4', will be in fact
passed by kernel to init, which will start to runlevel 4 instead of default 3 (as per
/etc/inittab), i.e. will start to graphical multi-user mode with X window system.
INITRD initrd.gz-4.4.14 is an initrd image that is mounted as temporary /
before the final / is mounted. Typically, an initrd is needed if kernel has to load
some additional modules to access the root device, or has to perform some actions
to make it accessible (think of RAID, LUKS, LVM). If you do not need initrd, simply
delete this line.

The second menu entry is largely the same, except that there is no '4' in APPEND

https://www.kernel.org/pub/linux/utils/boot/syslinux/
http://www.syslinux.org/wiki/index.php?title=Library_modules

2024/03/18 19:31 (UTC) 5/6 Set up SYSLINUX as boot loader on UEFI based hardware

SlackDocs - https://docs.slackware.com/

/dev/vgroot/V_ROOT. Simply put, this is non-graphical safe mode. If X window system
fails to start for whatever reason, you may end up with not only black screen, but also
blocked keyboard and mouse and therefore unable to fix the cause. So it is a good idea to
have this option prepared beforehand (another method to use otherwise unusable
machine with broken X is to SSH-in, though it is a less reliable method).

/boot/efi/EFI/SYSLINUX/syslinux.cfg

UI menu.c32
PROMPT 0
TIMEOUT 100
DEFAULT Slackware 14.2

MENU TITLE Machine Boot Menu

LABEL Slackware 14.2
 MENU LABEL Slackware 14.2
 LINUX vmlinuz-huge-4.4.14
 APPEND /dev/vgroot/V_ROOT 4
 INITRD initrd.gz-4.4.14

LABEL Slackware 14.2 no X
 MENU LABEL Slackware 14.2 no X
 LINUX vmlinuz-huge-4.4.14
 APPEND /dev/vgroot/V_ROOT
 INITRD initrd.gz-4.4.14

Still in /boot/efi/EFI/SYSLINUX, copy kernel here. Huge is the safer option. Generic may require
initrd and more modules in it. If you do not know which they are, the machine might not boot,
so go with the huge.

cp /boot/vmlinuz-huge-4.4.14 .

Create initrd if needed and copy here too. Man for options, but basically the command bellow
creates an initrd that will contain some USB-related modules to enable keyboard input (because
/dev/sda2 is encrypted (LUKS) and user will have to type in a passphrase).

mkinitrd -c -k 4.4.14 -C /dev/sda2 -L -R -f xfs -m xfs:hid:hid-
generic:usbhid:xhci-hcd:xhci-pci:ehci-hcd:ehci-pci:ohci-hcd:ohci-pci:uhci-
hcd:uhci-pci:usb-storage -r /dev/vgroot/V_ROOT -o /boot/initrd.gz-4.4.14
cp /boot/initrd.gz-4.4.14 .

Finally, add SYSLINUX to UEFI boot menu. Note that there will be in fact two boot menus. The
first is UEFI boot menu that will typically onyl show up if you press some key (e.g. F12 on Dell,
F9 on HP, F11 with AsRock mainboard, often just Esc) and will present you with a list of devices
or boot loaders to boot. Depending on how crappy your UEFI is, SYSLINUX may or may not show
up there.

The second boot menu is that of SYSLINUX, i.e. what you typed to syslinux.cfg and will show up either
if you do not tigger UEFI boot menu or trigger it and then select either SYSLINUX or device (hard

https://docs.slackware.com/_export/code/howtos:slackware_admin:set_up_syslinux_as_boot_loader_on_uefi_based_hardware?codeblock=9

Last
update:
2016/08/18
23:53
(UTC)

howtos:slackware_admin:set_up_syslinux_as_boot_loader_on_uefi_based_hardware https://docs.slackware.com/howtos:slackware_admin:set_up_syslinux_as_boot_loader_on_uefi_based_hardware

https://docs.slackware.com/ Printed on 2024/03/18 19:31 (UTC)

drive) it is on.

efibootmgr -c -d /dev/sda -p 1 -l \\EFI\\SYSLINUX\\syslinux.efi -L
"SYSLINUX"
Timeout: 2 seconds
BootOrder: 0000,0001,0002
Boot0000* SYSLINUX
Boot0001* UEFI: IP4 Realtek PCIe GBE Family Controller
Boot0002* UEFI: IP6 Realtek PCIe GBE Family Controller

Syslinux has been added with code 0000 (Boot0000) and is 1st in boot order. If it was not, order
would have to changed:

efibootmgr -o 0000,0001,0002

On some machines, it may be possible to change order also in UEFI (meaning its GUI/setup
utility).

Troubleshooting

If your machine complains it has nothing to boot, that may indicate efibootmgr command was
incorrect or somehow did not register. You may then try to force it to boot SYSLINUX by moving and
renaming it to EFI\Boot\bootx64.efi, which is kind of fallback option; the machine will try to boot that
at some point.

cd /boot/efi/EFI
mv SYSLINUX Boot
cd Boot
cp syslinux.efi bootx64.efi

Sources

http://www.syslinux.org/wiki/index.php?title=The_Syslinux_Project
https://wiki.archlinux.org/index.php/Unified_Extensible_Firmware_Interface

howtos, syslinux, uefi

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/howtos:slackware_admin:set_up_syslinux_as_boot_loader_on_uefi_based_hardware

Last update: 2016/08/18 23:53 (UTC)

http://www.syslinux.org/wiki/index.php?title=The_Syslinux_Project
https://wiki.archlinux.org/index.php/Unified_Extensible_Firmware_Interface
https://docs.slackware.com/tag:howtos
https://docs.slackware.com/tag:syslinux?do=showtag&tag=syslinux
https://docs.slackware.com/tag:uefi?do=showtag&tag=uefi
https://docs.slackware.com/
https://docs.slackware.com/howtos:slackware_admin:set_up_syslinux_as_boot_loader_on_uefi_based_hardware

	Set up SYSLINUX as boot loader on UEFI based hardware
	Why SYSLINUX
	Why UEFI
	Installation
	Create EFI Boot Partition
	Set up SYSLINUX
	Compilation
	Set up boot loader

	Troubleshooting

	Sources

