
2024/03/19 05:15 (UTC) 1/15 Install Slackware on an online.net Dedibox BareMetal Server

SlackDocs - https://docs.slackware.com/

Install Slackware on an online.net Dedibox
BareMetal Server

This tutorial explains on how to install and boot Slackware Linux on online.net Dedibox BareMetal
Server Start Family. It is focused on servers that you don't have the physical access to and those that
don't support remote exposure of the hardware (i.e. no KVM over IP). The setup of this kind of servers
is possible through a Web interface. Fortunately or not, this interface doesn't natively support
Slackware installation. No worries, we will manage nonetheless.

Although the very first parts of the tutorial are Dedibox server specific, the rest is more generic. This
means that the information provided here applies equally to other hosting offers, which just must
provide similar rescue OS (more on the rescue OS down below). Conversely, the first parts apply well
to Linux distributions other than Slackware. If you need fine grained control over the installation
process on the Dedibox server, you're in good place.

1. Dedibox rescue OS

The rescue OS is an operating system that you can boot your server into using the Web interface. This
OS allows you to perform maintainability tasks, should your main operating system fail to boot or
should you need to access the server, while bypassing your main OS. There are multiple versions of
the rescue OS to choose from; we will be using Linux based one.

You can (and should) connect to the rescue OS over SSH. One of the characteristics of the rescue OS
is that it is volatile, meaning that changes made to it are lost after reboot. But more importantly, the
SSH host keys are regenerated every time the rescue OS is booted, which results in the SSH host's
key fingerprint being changed too, whenever you reboot. This makes checking the authenticity of the
server a bit cumbersome.

One of the ways to verify the host's authenticity is to open online.net technical support ticket, asking
to provide you with the rescue OS host's key fingerprint. And because the fingerprint changes with
every reboot, it is not desirable to reboot the machine during Slackware installation. No big drama, it
is possible to successfully install and then boot Slackware into its full glory with only a single reboot at
the end of the journey. You can also connect without ensuring the host's authenticity, have a play and
even trial installation. Once you are familiar with the environment, you can reboot again into the
rescue OS, ask the technical support for the fingerprint, cleanup the hard drive and perform the final
installation and setup. Just beware that without verifying the host's authenticity you are susceptible to
MITM attacks. Although the rescue filesystem is volatile and you can wipe the disk content to make
sure it is clean and safe, still, the hardware itself might be the target of the attack. And nowadays,
hardware is actually running software (firmware) more often than not.

Fortunately, there is an alternative method that does not involve the engagement of the technical
support. You can read the full details on LinuxQuestions.org: Verifying host authenticity (SSH) after
logging in, over then accessible secure serial terminal. In the tutorial itself, I will only focus on how to
get the thing done.

https://www.online.net/en
https://www.online.net/en/dedicated-server#anchor-start
https://www.online.net/en/dedicated-server#anchor-start
https://console.online.net/
https://console.online.net/
https://www.linuxquestions.org/
https://www.linuxquestions.org/questions/linux-security-4/verifying-host-authenticity-ssh-after-logging-in-over-then-accessible-secure-serial-terminal-4175593807/#post5655311
https://www.linuxquestions.org/questions/linux-security-4/verifying-host-authenticity-ssh-after-logging-in-over-then-accessible-secure-serial-terminal-4175593807/#post5655311

Last
update:
2018/05/03
14:33
(UTC)

howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server https://docs.slackware.com/howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server

https://docs.slackware.com/ Printed on 2024/03/19 05:15 (UTC)

2. Serial console

The Web interface provides a serial console option, which allows you to interact with the server
hardware. It is of somehow limited use with the rescue OS (i.e. no login possible), but can be fully
utilised with the main OS. If properly configured, it will allow you to see the boot process of the main
OS and also to have a terminal login, should the SSH connection be not available for whatever reason.
(But don't expect anything fancy, it's just a serial console after all).

It turns out that, it is actually possible to log in into the rescue OS using the serial
console. At least it works when Ubuntu 16.04 amd64 is selected as rescue OS.
Unfortunately, this tutorial was written with the assumption that it was not possible
(which actually was the case!). For that reason, some steps are more complex than
they would be if the serial console was available from the beginning. This applies
especially to the server's SSH authenticity verification step. Unfortunately, I won't
update the tutorial to accommodate for this discovery.

3. Making the rescue OS available

If you've just purchased a fresh server, it should come with no operating system pre-installed.
Unfortunately, it means also that the rescue OS is not available yet.

To enable the rescue OS: using the Web interface, go to your server management page: Server →
Server list → (server name) Manage. If the only option you see is [INSTALL], then the rescue OS is
not available and you have to first install one of the offered operating systems. (Purist's note: choose
the operating system wisely, as the icon associated with this OS is going to represent your Slackware
system thereafter). Once the OS installation is complete, you are going to be presented with more
options: [REBOOT], [RESCUE], [SERIAL_CONSOLE] and [INSTALL]. You're ready to go now. Just
don't boot the rescue OS yet.

4. Preparing rescue OS access over SSH

Be careful not to overwrite your workstation's SSH keys in ~/.ssh

We are now about to create two SSH keys pairs. One pair is going to be used to login into the rescue
OS and the other (only public key part) for rescue OS authentication. Type the following on your
workstation:

$ mkdir dedibox_rescue_os_keys
$ cd dedibox_rescue_os_keys

2024/03/19 05:15 (UTC) 3/15 Install Slackware on an online.net Dedibox BareMetal Server

SlackDocs - https://docs.slackware.com/

$ ssh-keygen -t rsa -f login_key -N ''
$ ssh-keygen -t rsa -f auth_key -N ''

Using the Web interface, go to your SSH keys management page: logged in as (username) → SSH
keys and add the auth_key.pub and login_key.pub public keys. Note that after the successful addition,
the page is not automatically refreshed and to actually see the keys, you have to click SSH keys link
on the left hand side.

Uploading the keys through the Web interface has the effect of making them available to the rescue
OS. When the rescue OS boots, the keys are simply appended to the ~/.ssh/authorized_keys file for
the particular user.

These keys might be safely removed from the Web interface once you are done with
the Slackware installation.

5. Booting and connecting to the rescue OS

Using the Web interface, go to your server management page: Server → Server list → (server name)
Manage. Enable the serial console by clicking on the [SERIAL_CONSOLE] button and follow the
guide. The console will be opened in a new browser tab. Note that the console connection has
expiration time, so it won't stay there forever. Also, there are not many messages appearing related
to the rescue OS booting, but it's still better than nothing. Rescue OS takes some time to boot and
being able to see it can let you calm down a bit (just keep in mind that there is some time between
the moment the messages stop appearing and the moment you can actually connect over SSH). The
reason you need to start [SERIAL_CONSOLE] before [RESCUE] is that, the [SERIAL_CONSOLE]
button disappears once you boot with the rescue OS.

It is still possible to access the serial console, even if the [SERIAL_CONSOLE] button
i s n o t v i s i b l e . Y o u j u s t n e e d t o g o t o
https://console.online.net/en/server/state/XXXXX/bmc address, replacing XXXXX part
with the actual number of your server.

Now go back to server management page and click on [RESCUE]. When prompted for the operating
system selection, choose [Ubuntu_16.04_amd64] and then click on
[CLICK_HERE_TO_LAUNCH_THE_RESCUE_SYSTEM]. After a while, you will be presented with the
details needed to connect to the rescue OS over SSH. You can also switch to the [SERIAL_CONSOLE]
output window to monitor what is happening.

Once the rescue OS is fully booted, connect to it from your workstation:

$ ssh username@x.y.z.w -i ./login_key

When asked Are you sure you want to continue connecting (yes/no)?, answer yes.

https://console.online.net/en/server/state/XXXXX/bmc

Last
update:
2018/05/03
14:33
(UTC)

howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server https://docs.slackware.com/howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server

https://docs.slackware.com/ Printed on 2024/03/19 05:15 (UTC)

It might be a good idea to temporarily add the rescue OS SSH host's key fingerprint to
the ~/.ssh/known_hosts file on your workstation. This will allow you to re-login back
(e.g. in the case of a broken connection) into the rescue OS without the need for
repeating the authentication procedure described below. Just remember to remove the
fingerprint after you are done or if the authentication procedure described below fails.

Once logged in, to authenticate the rescue OS, on the server side type the following:

$ cat ~/.ssh/authorized_keys

and then compare the public keys printed on the terminal with auth_key.pub and login_key.pub public
keys you generated previously. If both the keys between the server and the workstation match, you
are secure to go. (Again, if you want to understand the details, refer to the aforementioned
LinuxQuestions.org thread).

Now, on the server side, I suggest you to first start the screen program and then log in as root (the
password is given on the rescue OS connection details page):

$ screen
$ sudo su -

(Being paranoid, I change the user and root passwords provided by online.net).

I will not go into details of screen program, but the reason we want to use it, is its ability to maintain
the remote terminal opened, even if the SSH (or rather network) connection breaks or you
accidentally close the terminal window on your side. Normally, such an event would break the
installation process. If that happens to you, and you use screen, then you can regain the remote
terminal (with all the started commands still executing!), by simply connecting over SSH and then re-
attaching to the so-called screen session:

$ screen -r
$ # Sometimes, detaching the session first is needed:
$ screen -rd SESSION_PID

All of the above means also that you cannot stop remote command execution by just closing the local
terminal window; screen session will be maintained on the remote end until you explicitly close it.
BTW, you can also use this functionality to lower the network traffic during installation phase, i.e.
once the packages started installing and need no attention, you can detach from the session and then
re-attach some time later to check the status. You use Ctrl+AD keyboard combination to detach from
screen session. Check the Internet on how to use the screen program (the man page is actually
enormously long).

6. Setting-up Slackware installer

https://www.linuxquestions.org/questions/linux-security-4/verifying-host-authenticity-ssh-after-logging-in-over-then-accessible-secure-serial-terminal-4175593807/#post5655311

2024/03/19 05:15 (UTC) 5/15 Install Slackware on an online.net Dedibox BareMetal Server

SlackDocs - https://docs.slackware.com/

environment (chroot)

The main motivation behind this HOWTO is the fact that online.net does not provide direct method of
Slackware installation on their Dedibox servers. And that is great! The point is, if such a method
existed, it would be something unfamiliar to a Slackware user: a GUI/Web based installer. Whereas
being dropped to the Slackware's installer shell allows you to install and configure the system the way
you want (TM). All the advanced options are available without much hassle. And we're going to use
them all. :-^

The procedure detailed below is known and common. We're going to chroot into the
unpacked Slackware initrd image and run setup from within there.

Our Slackware chroot will be running out of Ubuntu rescue OS, which is running out of
RAM based filesystem. The size of the RAM filesystem is ~8.0 GiB (that depends on
the total amount of system RAM). Hint: 8.0 GiB is more than enough to hold the full
Slackware packages tree, if need be (i.e. if you want to download the packages before
running setup).

Now, let's setup the Slackware installer chroot:

$ mkdir -p ~/slackware-chroot
$ cd ~/slackware-chroot
$ wget https://slackware.osuosl.org/slackware64-14.2/isolinux/initrd.img
$ gunzip -cd initrd.img | cpio -dvim
$ mount --bind /proc proc
$ mount --bind /sys sys
$ mount --bind /dev dev
$ mount --bind /dev/pts dev/pts
$ mount --bind /run run
$ touch etc/resolv.conf
$ mount --bind /etc/resolv.conf etc/resolv.conf

And run the chroot:

$ chroot ~/slackware-chroot /bin/bash --login
$ cd

Mounting /etc/resolv.conf provides DNS to the chroot.

Once you chrooted, you might want to play with the TERM environment variable, which is going to
influence the way that dialogs are displayed. By default, TERM=linux and it does not work well if you
use screen or are connecting from terminal emulator running under X.

For best results with screen, use the following:

Last
update:
2018/05/03
14:33
(UTC)

howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server https://docs.slackware.com/howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server

https://docs.slackware.com/ Printed on 2024/03/19 05:15 (UTC)

$ export TERM=screen

and if you do not use screen, but are connecting from within X:

$ export TERM=xterm

Finally, for the bare virtual terminal (VT), leave the default:

$ export TERM=linux

Welcome to the Slackware Linux installation disk!

7. Partitioning

You can now partition the disk to your liking, with two exceptions. In this tutorial, I'm going to use
separate partition to be mounted on /boot directory. This directory will hold the kernel, initrd and
bootloader config file. Which brings us to the second exception: as the bootloader, I'm going to use
syslinux installed to MBR, which means the disk has to use MBR label type. If you need GPT, you're on

your own.

The filesystem of the /boot partition has to be supported by syslinux. ext4 will do the job just fine. And
when it comes to the size, 128 MiB is sufficient.

The following instructions will destroy the data on the disk.

You can use your favourite partitioning tool, e.g. fdisk, cfdisk, etc. I'm going to use parted. Note that
the disk should be in “unmanaged” state, that is, services like LVM2 or software RAID (mdadm) should
be deactivated. I had a lot of headache releasing the disk from the control of LVM2, when I was

playing with it (but I managed).

By the way, the disk is already going to contain the partition table, which was created when we were
installing one of the stock OS-es in order to enable the rescue OS. The partition table can be wiped
with the following commands:

$ dd count=1 bs=512 conv=notrunc if=/dev/zero of=/dev/sda
$ partprobe

The following parted commands will create the MBR label and the /boot partition:

$ parted /dev/sda mklabel msdos
$ # Start at 1 MiB in the hope of a correct alignment:
$ parted -a optimal /dev/sda mkpart primary 1MiB 129MiB
$ # Set bootable flag:

2024/03/19 05:15 (UTC) 7/15 Install Slackware on an online.net Dedibox BareMetal Server

SlackDocs - https://docs.slackware.com/

$ parted /dev/sda set 1 boot on

Having the /boot [/dev/sda1] partition in place, you can partition the remaining space in the way that
suits your needs. I'm going to use LVM2 to manage the disk, so I create one big partition [/dev/sda2]
that is going to be passed to LVM2. The setup procedure for enabling LVM2 is described in Appendix
A. The following parted command will create the required partition:

$ # Passing "-a optimal" automatically aligns at the last sectors of the
disk.
$ # The start and end offsets have to be given explicitly:
$ parted -a optimal /dev/sda mkpart primary 129MiB 100%
$ # Set the 'lvm' flag only if you plan to use LVM2 for managing the disk.
$ parted /dev/sda set 2 lvm on

Let the kernel know about the partition changes:

$ partprobe

Let's verify the result:

$ parted /dev/sda print
Model: ATA SAMSUNG MZ7LN256 (scsi)
Disk /dev/sda: 256GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
 1 1049kB 135MB 134MB primary ext4 boot
 2 135MB 256GB 256GB primary lvm

8. Slackware installation (setup program)

If you prefer to download the required packages yourself, instead of letting the setup program do it
for you (I actually prefer it that way), now is the time.

I want to use rsync to download the packages beforehand. Since Slackware chroot does not provide
rsync command, we have to leave Slackware chroot for a moment, use rsync from Ubuntu rescue OS
and then come back:

$ # Exit from Slackware chroot:
$ exit
$ mkdir -p ~/slackware-chroot/packages
$ cd ~/slackware-chroot/packages
$ # Download only: a, ap, d, l, n packages series (I don't need GUI apps),
$ # pay !attention! to the "." at the end of command line:
$ rsync -vaz
rsync://rsync.osuosl.org/slackware/slackware64-14.2/slackware64/{a,ap,d,l,n}

Last
update:
2018/05/03
14:33
(UTC)

howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server https://docs.slackware.com/howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server

https://docs.slackware.com/ Printed on 2024/03/19 05:15 (UTC)

.
$ wget
https://slackware.osuosl.org/slackware64-14.2/slackware64/CHECKSUMS.md5
$ # Verify the checksums of the downloaded packages:
$ grep -P "\./(a|ap|d|l|n)/" CHECKSUMS.md5 | md5sum -c --quiet
$ mkdir -p ~/slackware-chroot/patches
$ cd ~/slackware-chroot/patches
$ Download patches, pay !attention! to the "." at the end of command line:
$ rsync -vaz
rsync://rsync.osuosl.org/slackware/slackware64-14.2/patches/packages .
$ wget https://slackware.osuosl.org/slackware64-14.2/patches/CHECKSUMS.md5
$ # Verify the checksums of the downloaded patches:
$ grep -P "\./packages" CHECKSUMS.md5 | md5sum -c --quiet
$ # Return to Slackware chroot:
$ chroot ~/slackware-chroot /bin/bash --login
$ cd
$ # Remember to update TERM as described earlier:
$ export TERM=screen

Having all the partitions in place, it's now time to run the setup program and perform the installation
as you know it. Just remember to format and mount the /boot partition when prompted by setup.
When prompted, skip LILO installation, as we're going to use syslinux instead. If you downloaded the
packages beforehand, point the setup to the pre-mounted /packages directory. Otherwise, use setup
to download the packages for you.

Don't reboot the machine when the setup program offers to at the end of the
installation.

9. Freshly installed Slackware chroot

Yes, one more chroot to deal with. The configuration of the freshly installed system is best
performed from the actual system itself. And we're going to do exactly that. When the setup program
finished its job, it has left the Slackware root filesystem (and some additional ones) mounted on /mnt.
And there is nothing preventing us from chrooting into this directory, meaning that we can actually
“log in” into the freshly installed system without rebooting.

This system is somehow limited (i.e. there are no services running), but has all the tools needed to
perform the final configuration steps before rebooting the server.

To avoid any unpleasant surprises, we mount some possibly needed filesystems, before chrooting:

$ cd /mnt
$ mount --bind /run run
$ mount --bind /dev/pts dev/pts

2024/03/19 05:15 (UTC) 9/15 Install Slackware on an online.net Dedibox BareMetal Server

SlackDocs - https://docs.slackware.com/

$ # Only needed if you downloaded the patches and want to apply them:
$ mkdir run/patches
$ mount --bind /patches/packages run/patches
$ # Enter Slackware Chroot (tm):
$ chroot /mnt /bin/bash --login
$ cd
$ # Remember to update TERM as described earlier:
$ export TERM=screen

10. Applying patches

The following set of commands will apply all the available patches and let you know of any .new files
to deal with:

$ find /run/patches -name *.txz -exec upgradepkg {} \;
$ find /etc -name *.new

11. Bootloader (syslinux)

The following set of commands will install the syslinux bootloader:

$ extlinux --install /boot
$ dd count=1 bs=440 conv=notrunc if=/usr/share/syslinux/mbr.bin of=/dev/sda

Then, create the syslinux config file:

$ cat << EOF > /boot/syslinux.cfg
PROMPT 0
TIMEOUT 0
DEFAULT vmlinuz-generic
SERIAL 1 9600

LABEL vmlinuz-generic
 KERNEL vmlinuz-generic
 APPEND console=ttyS1,9600 printk.time=0 quiet ipv6.disable=1 ro
 INITRD initrd-generic.gz
EOF

This configuration will enable the messages to appear on the serial console. I also specify some kernel
parameters (printk.time=0 quiet) to considerably silence its output (error messages would still
appear). As I do not want to bother with IPv6, I disable it at kernel level (ipv6.disable=1). As you can
see, we will be using the generic kernel with initrd. This is the only way (that is, by means of initrd)
the LVM2 can be made functional.

Note that the kernel and initrd paths specified in syslinux.cfg have to be relative to the /boot

Last
update:
2018/05/03
14:33
(UTC)

howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server https://docs.slackware.com/howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server

https://docs.slackware.com/ Printed on 2024/03/19 05:15 (UTC)

directory. This is because syslinux is unable to read from LVM2 based root partition, so something like
/boot/vmlinuz-generic would not work (/ is on LVM2 partition in my case).

12. Initial RAM disk (initrd)

Create the initrd config file:

$ cat << EOF > /etc/mkinitrd.conf
mkinitrd.conf
See "man mkinitrd.conf" for details on the syntax of this file
#
#SOURCE_TREE="/boot/initrd-tree"
#CLEAR_TREE="0"
OUTPUT_IMAGE="/boot/initrd-generic.gz"
KERNEL_VERSION="$(readlink /boot/vmlinuz-generic | rev | cut -f1 -d- | rev
)"
#KEYMAP="us"
MODULE_LIST="ext4"
#LUKSDEV="/dev/sda2"
#LUKSKEY="LABEL=TRAVELSTICK:/keys/alienbob.luks"
ROOTDEV="/dev/vg0/rootfs"
ROOTFS="ext4"
#RESUMEDEV="/dev/sda2"
#RAID="0"
LVM="1"
#UDEV="1"
#MODCONF="0"
#MICROCODE_ARCH="/boot/intel-ucode.cpio"
WAIT="0"
EOF

As the comment says, refer to the mkinitrd.conf man page for details. In particular, make sure
your MODULE_LIST, ROOTDEV and ROOTFS are defined correctly. If you don't need LVM2 support, you
can set LVM=“0” (or comment it out).

The notable thing is how the KERNEL_VERSION is automatically derived, not for the running kernel,
but rather for the installed kernel (which might be newer or older than the running one).
/etc/mkinitrd.conf is sourced by the /sbin/mkinitrd script, so it is possible to use shell commands
within the config file. On standard Slackware installation, you will find that /boot/vmlinuz-generic is
actually a symlink:

$ ls -l /boot/vmlinuz-generic
lrwxrwxrwx 1 root root 22 Dec 13 00:44 /boot/vmlinuz-generic -> vmlinuz-
generic-4.4.38

So the following code:

2024/03/19 05:15 (UTC) 11/15 Install Slackware on an online.net Dedibox BareMetal Server

SlackDocs - https://docs.slackware.com/

KERNEL_VERSION="$(readlink /boot/vmlinuz-generic | rev | cut -f1 -d- | rev
)"

will simply extract the version number from the installed kernel image.

And finally, to create the initrd, run the following command:

$ mkinitrd -c -F

Note that it is not necessary to run any syslinux related commands after creating or updating the
initrd image. This is different from LILO, where you have to run lilo command after changing the initrd
image.

13. Enabling serial console access

As of now, the serial console configuration in /boot/syslinux.cfg allows for interacting with the
bootloader and also to see the kernel messages, but it does not allow for root login over serial port. If
you want to enable it, then uncomment the following line in /etc/inittab:

s2:12345:respawn:/sbin/agetty -L ttyS1 9600 vt100

and the following line in /etc/securetty:

ttyS1

You might also want to comment out the follwing lines in /etc/inittab:

#c1:12345:respawn:/sbin/agetty --noclear 38400 tty1 linux
#c2:12345:respawn:/sbin/agetty 38400 tty2 linux
#c3:12345:respawn:/sbin/agetty 38400 tty3 linux
#c4:12345:respawn:/sbin/agetty 38400 tty4 linux
#c5:12345:respawn:/sbin/agetty 38400 tty5 linux
#c6:12345:respawn:/sbin/agetty 38400 tty6 linux

and the following lines in /etc/securetty:

#tty1
#tty2
#tty3
#tty4
#tty5
#tty6

tty[1-6] are for the standard VT login prompts, but since we have no keyboard and no display, we
cannot make any use of them.

Last
update:
2018/05/03
14:33
(UTC)

howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server https://docs.slackware.com/howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server

https://docs.slackware.com/ Printed on 2024/03/19 05:15 (UTC)

14. Finalising the installation

We're done with the installation and initial configuration of the Slackware Linux. You can now
prepare the system for reboot and, well, reboot. Before doing that, you might also consider looking at
the Appendix B, where I explain how to prepare the SSH stuff, so that after rebooting, you can
connect to the server with SSH right away. (Otherwise, you will have to log in over serial console to
perform the other configuration tasks).

First, prepare the hard disk to safely survive the reboot phase. Note that, I only (u)mount /mnt/boot
and /mnt partitions as these are the only hard disk partitions I have. If you have more mounted disk
partitions, you should umount them too:

$ # Exit freshly installed Slackware chroot:
$ exit
$ umount -v /mnt/boot
$ mount -v -o remount,ro /mnt
$ # This never hurts:
$ sync
$ # Only needed if LVM2 is used:
$ vgchange -an --ignorelockingfailure
$ # This never hurts again:
$ sync
$ # Shouldn't be needed, but just in case:
$ sleep 3

Now, go to the server management page and press [BOOT_IN_NORMAL_MODE] button. You can
observe the reboot process on the serial console.

A. Setting up LVM2 disk management

The following instructions will destroy the data on the disk.

Before continuing to LVM2 partitioning, if the disk is already under LVM2 control, it has to be first
deactivated. I use the following set of commands to do so:

$ lvscan
$ (cd /dev/mapper && lvchange -an $(pvs --noheadings -o vg_name))
$ vgscan
$ vgchange -an $(pvs --noheadings -o vg_name)
$ pvscan
$ pvremove -ffy $(pvs --noheadings -o pv_name)
$ partprobe

2024/03/19 05:15 (UTC) 13/15 Install Slackware on an online.net Dedibox BareMetal Server

SlackDocs - https://docs.slackware.com/

To find out more about LVM2, go to https://wiki.archlinux.org/index.php/LVM

Remember that the disk has already been partitioned using MBR in the “Partitioning” chapter and
/dev/sda2 already exists. The following set of commands will activate LVM2 on /dev/sda2 and create
the partitions (the LVM2 partitions are going to sit on top of /dev/sda2 partition):

$ pvcreate /dev/sda2
$ pvdisplay
$ vgcreate vg0 /dev/sda2
$ vgdisplay
$ # Create the partitions (logical volumes):
$ lvcreate -L 12G vg0 -n rootfs
$ lvdisplay
$ vgchange -ay

NOTE:

The good thing about LVM2 is that you can easily add more partitions later on.
I have chosen partition sizes that suit my current needs, leaving significant free space. LVM2
can easily grow the sizes later on if needed.
I haven't created the swap partition. The server has more than enough of RAM. But if needed, it
can be easily added later on.

B. SSH server configuration (before
rebooting)

You have to be in the chroot of the freshly installed Slackware system to perform the
configuration steps detailed below.

If you enabled the sshd service during setup, it'll be automatically started the next time the Slackware
system boots. Unfortunately, you won't be able to connect to it for two reasons:

the host keys are not generated yet, so you won't be able to verify host's authenticity and of1.
course you don't want to connect without being able to verify it,
user's public key authentication is not set up and of course you don't want to be logging in2.
using password authentication.

To solve the first issue, we need to manually perform the task that would normally be done by the
Slackware init scripts when the system boots for the first time. Generating the host keys basically
boils down to the following command:

$ ssh-keygen -A

And then to obtain the host's key fingerprint (I stick to RSA):

https://wiki.archlinux.org/index.php/LVM

Last
update:
2018/05/03
14:33
(UTC)

howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server https://docs.slackware.com/howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server

https://docs.slackware.com/ Printed on 2024/03/19 05:15 (UTC)

$ ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key

Setting up public key authentication is a bit more cumbersome, but still far from being rocket science.
:-^ First, you need to upload your public key from your workstation to the server. Run the following
command on the workstation:

$ scp -i ./login_key ~/.ssh/id_rsa.pub user@x.y.z.w:~

NOTE: The above command uploads ~/.ssh/id_rsa.pub public key, but for the transfer authentication,
it uses the very same key you uploaded earlier using the Web interface.

Now, back to the server, create the required ~/.ssh directory:

$ mkdir ~/.ssh

I told you to use the screen program at the beginning, right? Now we will make use of it. The
public key that you uploaded above has been placed in the user home directory of the Ubuntu rescue
OS. We need to rename it to the authorized_keys file in the ~/.ssh directory of the fresh Slackware
installation:

$ # Detach from screen session, you'll be dropped to Ubuntu rescue OS:
(keyboard) Ctrl+a d
$ # Login as root:
$ sudo su -
$ mv /home/user/id_rsa.pub /root/slackware-
chroot/mnt/root/.ssh/authorized_keys
$ # Exit root login:
$ exit
$ Re-attach to screen session:
$ screen -r

Ensure correct ownership and permissions, otherwise sshd won't let us in:

$ chown root:root ~/.ssh
$ chown root:root ~/.ssh/authorized_keys
$ chmod 0700 ~/.ssh
$ chmod 0600 ~/.ssh/authorized_keys

NOTE:

If you haven't used screen, you would just open second SSH connection to perform the above1.
task. Alternatively, you could exit all the chroots and then run them again, but who would want

to do that?
Remember that the correct server's network configuration has to be in place for you to be able2.
to connect over SSH after reboot.

At this point, all the pieces should be in place and you should be able to successfully login to your

2024/03/19 05:15 (UTC) 15/15 Install Slackware on an online.net Dedibox BareMetal Server

SlackDocs - https://docs.slackware.com/

fresh Slackware installation after the server is rebooted.

NOTE: I know I allow for root login over SSH. I have to live with that. :-^

Sources

Originally written by Andrzej Telszewski

howtos, author atelszewski

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server

Last update: 2018/05/03 14:33 (UTC)

https://docs.slackware.com/wiki:user:atelszewski
https://docs.slackware.com/tag:howtos
https://docs.slackware.com/tag:author_atelszewski?do=showtag&tag=author_atelszewski
https://docs.slackware.com/
https://docs.slackware.com/howtos:slackware_admin:install_slackware_on_a_online.net_dedibox_baremetal_server

	Install Slackware on an online.net Dedibox BareMetal Server
	1. Dedibox rescue OS
	2. Serial console
	3. Making the rescue OS available
	4. Preparing rescue OS access over SSH
	5. Booting and connecting to the rescue OS
	6. Setting-up Slackware installer environment (chroot)
	7. Partitioning
	8. Slackware installation (setup program)
	9. Freshly installed Slackware chroot
	10. Applying patches
	11. Bootloader (syslinux)
	12. Initial RAM disk (initrd)
	13. Enabling serial console access
	14. Finalising the installation
	A. Setting up LVM2 disk management
	B. SSH server configuration (before rebooting)
	Sources

