2024/03/19 04:54 (UTC) 1/6 Slackware Live DAW: Minimizing Latency

Slackware Live DAW: Minimizing Latency

When is Minimal Latency Actually Needed?

Low latency in a digital audio workstation is needed when providing live playback to the artist. If audio
coming from the monitor is delayed from the action of playing an instrument or singing, it interferes
with the artist's ability to keep in time. This applies to recording a musician or vocalist with live
monitoring, playing a live show with software instruments, mixing a live show through a DAW, or any
other work where audio is being created while listening to it.

The threshold for latency being audible is around 10 msec (from playing until hearing through the
monitor), and can also depend on the instrument played. A decent audio interface can be pushed
below 10 msec round trip latency, whether its PCI, Firewire, or USB.

In other cases like editing and mixing tracks, the latency doesn't matter as much and it can be
compensated easily. It is better to run the audio server with a larger buffer size, reducing the demand
on the system. This allows you to work with more plugins, instruments, tracks, etc. and have a much
lower risk of hitting buffer xruns.

This article assumes that you are interested in reducing latency in the Slackware Live DAW for the
purpose of live playing, and will provide some ideas on how to achieve xrun free and stable operation
at these demanding settings.

Slackware Live DAW as a Starting Point

The Slackware Live DAW Edition is a pre-configured Slackware distribution that has been optimized
for audio work. Eric (aka AlienBOB) has already set up the typical prerequisites for real-time audio
work, including:

¢ A real-time configured kernel (using the 'threadirqs' boot option)

CPU governor set to maximum performance

Real-time priority scheduling and unlocked memory for the audio group (using PAM)
HPET and RTC access set up with udev rules

sysctl tweaks

KDE Plasma 5 GUI tweaks

As a live distribution, getting the system set up just involves plugging in a USB stick and rebooting.
There's no need to maintain two separate installs, or risk running real-time privileged applications on
your day to day machine.

Of course the performance of the system is also dependent on the user's hardware. A USB, Firewire,
or PCl audio interface makes all the difference in getting xrun free, low latency audio.

By default, the Slackware Live DAW will boot using the JACK audio server, managed by QJackCtl. The
default settings are already lowered for real-time work and offers 10.7 msec of “calculated buffer
latency”, which gives anywhere between 10msec - 20msec round trip latency when including the
hardware's delay. The buffer settings can be lowered further, but the limit on how far depends on the

SlackDocs - https://docs.slackware.com/

https://docs.slackware.com/howtos:multimedia:digital_audio_workstation:compensating_latency
https://docs.slackware.com/wiki:user:alienbob

Last

update:

2020/08/10 howtos:multimedia:digital_audio_workstation:minimizing_latency https://docs.slackware.com/howtos:multimedia:digital_audio_workstation:minimizing_latency
21:35

(UTC)

hardware. PCl devices generally achieve the lowest latency, although USB and Firewire can still work
well.

Audio Server Settings

The key settings that will adjust the latency of the system for the audio server are as follows:

Sample Rate

This sets the speed of how many audio samples (called frames) are taken per second. A higher
sample rate will be fill up the buffer faster, leading to lower latency. The sample rate of 48000Hz is
default. Other typical sample rates are 44100Hz, 88200Hz, 96000Hz, and 192000Hz. Note that higher
sample rates will load the CPU more than lower rates.

Frames/Period

This setting determines the size of the buffer, in conjunction with the Periods/Buffer setting. The
default settings use base 2 numbers (i.e 16, 32, 64, 128, 256, etc.), although custom values can be
entered. Just be aware that some plugins are hard-coded to only work with base 2 values for
Frames/Period, and will throw errors if set to anything otherwise. E.g. guitarix's cabinet simulator wont
work and gives errors if the audio server isn't running a base 2 frames/period setting.

Custom values come in useful for some USB interfaces, which perform better with a buffer latency
that is a whole number multiple of milliseconds, For example, a setting of 48000Hz, 48 frames/period,
and 2 periods/buffer will use a buffer of 48 x 2 = 96 samples, and at 48000Hz, this takes 96/48000 =

https://docs.slackware.com/ Printed on 2024/03/19 04:54 (UTC)

https://docs.slackware.com/_detail/howtos:multimedia:digital_audio_workstation:images:jack-settings.png?id=howtos%3Amultimedia%3Adigital_audio_workstation%3Aminimizing_latency

2024/03/19 04:54 (UTC) 3/6 Slackware Live DAW: Minimizing Latency

2 milliseconds to fill. Applying this logic, the optimal settings for USB devices have been documented
here: https://wiki.linuxaudio.org/wiki/list_of jack_frame_period_settings_ideal _for_usb_interface

Lower size buffers require the CPU to work harder to keep up with the sample rate.

Periods/Buffer

This setting works with the Frames/Period to set the size of the buffer. Values of either 2 or 3 are used
here. The man page for jackd recommends using 3 for USB and Firewire interfaces, and 2 for
everything else (note: that is just a recommendation, not a rule). Values of 3 provide more
combinations for whole numbers of millisecond buffer latency, but there are several combinations
with 2 that also work. E.g. 48000Hz/48/2 can be used with a USB interface, providing the computer is
sufficient for the task. A table of optimal USB interface settings can be found at the link in the
previous section, or the references of this article.

Synchronous Mode

In synchronous mode a cycle of the JACK server reads the inputs, executes the graph, and writes the
outputs. In asynchronous mode the server doesn't wait for the graph to execute, writing the outputs
in the next cycle. The end result is that asynchronous mode adds an extra period to the buffer,
making the buffer latency of asynchronous mode slightly higher than synchronous mode.

Testing Audio Server Settings

Having a variety of setting options leads to a number of possible combinations that can work with the
audio server. When testing out different settings to find what works best, examine the DSP load when
you start the server at the new settings. DSP load will be low at server startup, since there is no load
yet. On a well configured machine DSP load will be under 1% while idle. Running applications and
plugins increases the load, and at a high enough load the system will xrun. If the DSP load is higher at
no-load, that means you can expect less plugins and higher chances for xruns for that setting.

A program called 'xruncounter' was developed by the linuxmusicians.com community that can be
used to more thoroughly test a JACK audio server. After starting the server, 'xruncounter'is run
from a terminal. (note: 'xruncounter -s'runs a multicore test), which then builds up DSP load over
time, and exits automatically once it detects xruns. This provides an indication of how well the system
will perform under load for a given setting. A well configured system will get into the high 90% range
of DSP load before hitting xruns.

The xruncounter program also provides an indication of the amount of programs or plugins from the
cycle count hit by the first xrun. A higher number of cycles before xruns occur indicate that more
plugins can be used at that setting. The best settings will run up to a high DSP load, have a higher
cycle count, and still have acceptable round trip latency.

The following image shows an example of xruncounter's output, with good results:

SlackDocs - https://docs.slackware.com/

https://wiki.linuxaudio.org/wiki/list_of_jack_frame_period_settings_ideal_for_usb_interface
http://linuxmusicians.com

Last

update:

2020/08/10 howtos:multimedia:digital_audio_workstation:minimizing_latency https://docs.slackware.com/howtos:multimedia:digital_audio_workstation:minimizing_latency
21:35

(UTC)

samplerate is -'F'HHTJH

jack rumn lIII.| with realtime priority B85
¥run 1 at DSP load 99.82% wse 1.33ms from 1.33ms jack cycle time

1r| c |_|r|1|:|'|_|=1'r'

yele time

Further Tuning Options

There are a number of options that can be taken to increase your hardware's stability at low latency
settings. In general, these measures are taken to either reduce DSP load, or to increase stability of
the computer, since this is where we can make changes. In no particular order, some things that can
help are:

Limit CPU C-States to C1

CPU C-states are the various levels of power saving modes that the CPU can enter when idling. C-
states are useful for day to day computer usage, since they reduce energy consumption. However,
the time taken for the CPU to switch in and out of higher C-states can reach into the millisecond
range, which can be longer than the audio server's buffer time at low latency settings. This will
manifest itself as occasional xruns occurring on the system, even when the DSP load is low. Limiting
C-states to C1 will keep the CPU cores running at full speed, and will remove these xruns, at the
expense of a slightly warmer CPU.

CPU clock frequency will also run more consistently when limited to C1, which gives good stability and
xrun free audio for longer live sessions. CPU clock speed can be monitored from a terminal with a
command like “watch -n 0.1 grep MHz /proc/cpuinfo”. When limited to C1, the frequency
reported here will not vary beyond a 1 MHz difference. Without the limit the CPU frequency will
bounce around more, which can cause occasional xruns.

C-states can be limited to C1 by booting with 'intel idle.max cstate=1'on the kernel
command line.

Alternatively the max C-state can be adjusted at run time by opening the /dev/cpu_dma_ latency
file and writing a lower value (in microseconds) to the file. A value less than 10 will limit to C1, with
lower values improving CPU frequency stability (down to 0). Note that the limit will be removed when
the file is closed.

A simple C program to handle the /dev/cpu_dma_latency file is “cpudmalatency.c” and can be
found in the references of this article. Note that the program must be run as root, to get write access
to the /dev/cpu_dma latency file.

Monitor Temperature & Limit CPU Frequency If Needed

It is a good idea to monitor CPU temperatures with something like “watch -n 1 sensors” if you

https://docs.slackware.com/ Printed on 2024/03/19 04:54 (UTC)

https://docs.slackware.com/_detail/howtos:multimedia:digital_audio_workstation:images:xruncounter-results.png?id=howtos%3Amultimedia%3Adigital_audio_workstation%3Aminimizing_latency

2024/03/19 04:54 (UTC) 5/6 Slackware Live DAW: Minimizing Latency

are planning on using the DAW for extended lengths of time at low latency settings. The CPU governor
is set to performance, which drives the CPU at its maximum clock frequency. This is needed to keep
up with the real-time audio work, but it also leads to higher power consumption (and heating) when
DSP load is added. Critical level temperatures will cause CPU throttling and xruns in the audio server.

If temperatures reach critical levels, it is a good idea to inspect and clean the cooling system. The
maximum CPU clock frequency can also be lowered to make the performance governor run the
machine at a lower limit. This reduces the temperature of the CPU and can provide a more stable
clock frequency, which in turn provides long session stability.

The maximum clock frequency of the performance governor can be changed by echoing new values
into /sys/devices/system/cpu/cpu{0,1,2,etc}/cpufreq/scaling max freq.E.g. A
machine defaults to a value of 2800000 (in kHz, which is 2.8 GHz) maximum. Echoing a value of
1800000 for example will set the new limit to 1.8Ghz, which reduces system temperature and
increases stability for long sessions.

Utilize 'toram’'

The Slackware Live DAW can be run at very low latency settings while operating from the USB drive.
However, operations that read/write to the USB drive can cause xruns (e.g. recording audio to the
USB drive, or opening programs which have to be read from the USB drive to memory). If you have
enough RAM (8GB or more), the USB can be copied to RAM by booting with the parameter 'toram',
which means that the USB drive is not read/written afterwards (unless you remount it of course).

Write to SSD

Recorded audio has to be written somewhere. Having a fast storage device like an SSD will ensure
that disk writes don't bottleneck the system at the storage device.

Kill Pulseaudio

The default setup from boot of Slackware Live DAW has pulseaudio running and available to the JACK
server. Having pulseaudio enabled is useful for getting audio out of programs that connect to
pulseaudio instead of JACK (like a browser). However, if you don't need it, it can be stopped and will
reduce the DSP load a little. E.g. On the author's machine, the JACK server idles at no-load around
3%-5% DSP when pulseaudio is running. Killing pulseaudio drops the DSP load down to between 0.1%
-0.2%

Pulseaudio is designed to auto-spawn when you log in and will re-spawn if it dies. To disable it you can
disable auto-spawning in your user profile by creating or editing the file
/home/1live/.config/pulse/client.conf and adding “autospawn=no". Then you can kill the
pulseaudio process and it will not restart. If this change is made on a persistent USB, then subsequent
reboots will keep pulseaudio disabled.

Close Extraneous Programs

SlackDocs - https://docs.slackware.com/

Last

update:

2020/08/10 howtos:multimedia:digital_audio_workstation:minimizing_latency https://docs.slackware.com/howtos:multimedia:digital_audio_workstation:minimizing_latency
21:35

(UTC)

Running additional programs (e.g. a web-browser) takes away from your available headroom for real-
time audio work. Close what you don't need to give the minimal CPU load and more headroom.

Example Setup

Author's Setup:

Laptop: Dell XPS13 (9350), Focusrite Scarlett 18i8 (2nd Gen) USB, JACK @ 48000/48/2/Sync, toram,
writing to SSD, and limited to C1. This setup can run long term without xruns, while recording multiple
tracks at once. CPU temperature averages around 80C under load, but could have the frequency max
limit reduced to run cooler, while still maintaining stability. Round trip latency (including hardware on
USB) measures at 5.13 ms, which is good enough for live performing.

References

https://alien.slackbook.org/blog/configuring-slackware-for-use-as-a-daw/
https://wiki.linuxaudio.org/wiki/list_of jack frame_period_settings ideal for usb interface
https://github.com/jackaudio/jackaudio.github.com/wiki/Differences-between-jackl-and-jack?2
https://github.com/Gimmeapill/xruncounter (xruncounter program)
https://linuxmusicians.com/viewtopic.php?f=27&t=19268 (xruncounter information)
https://linuxmusicians.com/viewtopic.php?f=27&t=19858&start=15 (some info on C-state
performance with audio work)

https://gist.github.com/SaveTheRbtz/f5e8d1lca7b55b6a7897b (cpudmalatency program)

Sources

e Originally written by Bob Funk

howtos, multimedia, daw, audio, author Oxbf

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/howtos:multimedia:digital_audio_workstation:minimizing_latency

Last update: 2020/08/10 21:35 (UTC)

https://docs.slackware.com/ Printed on 2024/03/19 04:54 (UTC)

https://alien.slackbook.org/blog/configuring-slackware-for-use-as-a-daw/
https://wiki.linuxaudio.org/wiki/list_of_jack_frame_period_settings_ideal_for_usb_interface
https://github.com/jackaudio/jackaudio.github.com/wiki/Differences-between-jack1-and-jack2
https://github.com/Gimmeapill/xruncounter
https://linuxmusicians.com/viewtopic.php?f=27&t=19268
https://linuxmusicians.com/viewtopic.php?f=27&t=19858&start=15
https://gist.github.com/SaveTheRbtz/f5e8d1ca7b55b6a7897b
https://docs.slackware.com/wiki:user:0xbf
https://docs.slackware.com/tag:howtos
https://docs.slackware.com/tag:multimedia?do=showtag&tag=multimedia
https://docs.slackware.com/tag:daw?do=showtag&tag=daw
https://docs.slackware.com/tag:audio?do=showtag&tag=audio
https://docs.slackware.com/tag:author_0xbf?do=showtag&tag=author_0xbf
https://docs.slackware.com/
https://docs.slackware.com/howtos:multimedia:digital_audio_workstation:minimizing_latency

	Slackware Live DAW: Minimizing Latency
	When is Minimal Latency Actually Needed?
	Slackware Live DAW as a Starting Point
	Audio Server Settings
	Sample Rate
	Frames/Period
	Periods/Buffer
	Synchronous Mode
	Testing Audio Server Settings

	Further Tuning Options
	Limit CPU C-States to C1
	Monitor Temperature & Limit CPU Frequency If Needed
	Utilize 'toram'
	Write to SSD
	Kill Pulseaudio
	Close Extraneous Programs
	Example Setup

	References

	Sources

