
2024/03/18 21:48 (UTC) 1/9 Qemu Support in Slackware ARM

SlackDocs - https://docs.slackware.com/

Qemu Support in Slackware ARM

This document describes the process of installing Slackware ARM inside of QEMU.

QEMU is a full system emulator that can emulate a range of real hardware architectures. In this
case we will use QEMU to emulate the ARM Ltd. “Versatile Express” development board.
QEMU provides a platform to allow an operating system to believe that it is running on real
hardware.
QEMU runs on your Slackware PC or server. In most cases this will be a desktop machine.
However, it is possible to run QEMU on a headless server and use VNC for graphics.

Last modified (September 2020)

This tutorial was last verified on September, 22 2020, on Qemu 4.1 installed on Slackware64-
current, dated Sun Sep 20 08:08:08 UTC 2020. Verification on Slackware 14.2 is still necessary. The
helper scripts were built for qemu-2.5, and do not work with the latest version of qemu (4.2 at the
time of writing).

The issues are to do with the network support. They should be fixed.

If you have suggestions for the helper scripts, please post a diff on here or email mozes at slackware.
Please base fixes on the the latest scripts.

Who is Slackware ARM in QEMU aimed at?

The aim of installing Slackware ARM inside QEMU is to allow people who do not have ARM hardware to
try out Slackware ARM.

While QEMU is an excellent emulator, it is very slow compared to real ARM hardware. QEMU was used
for approximately a year to develop most of Slackware ARM version 12.2. Due to the slow speed of
QEMU, distcc can be used on several x86 machines to speedup compilations. It's possible to
effectively use Slackware ARM in QEMU, however be aware that it will not present the best user
experience due to its lack of speed. Ideally Slackware ARM should be run on real ARM hardware.

This document is a work in progress and it targets the development release of Slackware
ARM, Slackwarearm-current.

Documentation for Slackware ARM 14.0, 14.1, and 14.2, can be found here:

Slackwarearm-14.0
Slackwarearm-14.1
Slackwarearm-14.2

https://www.linuxquestions.org/questions/slackware-arm-108/qemu-system-arm-panic-on-x86_64-a-4175670124/
ftp://ftp.arm.slackware.com/slackwarearm/boardsupport/qemu/slackwarearm-current/helper-scripts/
https://www.qemu.org/
https://distcc.github.io/
http://ftp.arm.slackware.com/slackwarearm/slackwarearm-14.0/
http://ftp.arm.slackware.com/slackwarearm/slackwarearm-14.1/
http://ftp.arm.slackware.com/slackwarearm/slackwarearm-14.2/

Last
update:
2021/03/28
12:51
(UTC)

howtos:hardware:arm:qemu_support_in_slackware_arm https://docs.slackware.com/howtos:hardware:arm:qemu_support_in_slackware_arm

https://docs.slackware.com/ Printed on 2024/03/18 21:48 (UTC)

Installation Environment Assumptions

Several assumptions are made to aid in writing this document.

The host machine is running a full installation of Slackware x86 or x86_64
You have root access on the host machine and can compile software
The Slackware host and QEMU emulator are on a secure Local Area Network

Slackware x86 Host Prerequisites

Download the Slackwarearm distribution package tree with rsync1.
Populate a location with the Slackware ARM QEMU files2.
Install QEMU and the device-tree-compiler software on the Slackware x86 host3.
Configure QEMU Permissions on the Slackware x86 Host4.
Create the QEMU disk image using the helper scripts5.
Configure a web server to mirror Slackware ARM for the qemu guest6.

Download Slackware ARM

Download Slackware ARM to your Slackware x86 Host. In this tutorial rsync is used to mirror
Slackware ARM. Before running rsync, make sure your user has read, write, and execute permissions
within the directory you pick. In this example /slackwarearm/$SLACKREL is used, but you can use a
directory of your choice.

Log in as root and run the following:

mkdir -p /slackwarearm/$SLACKREL
cd /slackwarearm/$SLACKREL
rsync --exclude '*/source/*' --delete -Pavv
ftp.arm.slackware.com::slackwarearm/$SLACKREL .

If you wish to use a web browser, wget, or lftp to download Slackware ARM, the mirror is here.

The $SLACKREL variable refers to the Slackware ARM tree you downloaded. If you
c h o s e S l a c k w a r e a r m - 1 4 . 2 , t h e r s y n c U R L w i l l b e
ftp.arm.slackware.com::slackwarearm/slackwarearm-14.2

Populate Slackware ARM Files and Directories

In order to boot the Slackware ARM installer you need to create a directory that stores the Kernel and
Initial RAM disk. You also need a few helper scripts to run QEMU. In this totorial, all of these files will
be stored in /slackwarearm.

http://slackware.uk/slackwarearm/
ftp://ftp.arm.slackware.com::slackwarearm/slackwarearm-14.2

2024/03/18 21:48 (UTC) 3/9 Qemu Support in Slackware ARM

SlackDocs - https://docs.slackware.com/

Copy the kernel and RAM disk:

cd /slackwarearm
cp -fa /slackwarearm/$SLACKREL/kernels/armv7/{zImage*,initrd*,dtb}
/slackwarearm
cp -fa /slackwarearm/$SLACKREL/isolinux/initrd-armv7.img /slackwarearm

Download and copy the QEMU helper scripts:

cd /tmp ; mkdir qemu ; cd qemu
rsync -Prlvv --delete
ftp.arm.slackware.com::slackwarearm/boardsupport/qemu/$SLACKREL .
cd $SLACKREL
cp -fav helper-scripts/* /slackwarearm

You can find the helper scripts here if you do not wish to use rsync to download them.

The $SLACKREL variable refers to the Slackware ARM tree you downloaded. The rsync
URL for the QEMU helper scripts will be:

ftp.arm.slackware.com::slackwarearm/boardsupport/qemu/slackwarea
rm-current

Install QEMU and device-tree-compiler

Installing SlackBuilds is not apart of the scope of this article. If you need assistance with installing
QEMU or device-tree-compiler, please refer to the SlackBuilds.org HOWTO page. With that said, there
are a few recommendations:

If you are running Slackware-current you can install QEMU and skip installing the device-tree-
compiler package. Slackware-current already includes the device-tree-compiler package in a full
installation.
Please be certain that you did a full Slackware installation on your x86 host prior to installing
these SlackBuilds.
Slackware 14.0, 14.1, and 14.2 users need to install the device-tree-compiler package from
SlackBuilds.org prior to installing QEMU.
You can download and install QEMU from SlackBuilds.org.
You will not have the ability on 14.0, 14.1, and 14.2 systems to emulate the ARM architecture in
QEMU if you do not first install the device-tree-compiler package.

QEMU Permissions

There are a few permissions that need to be set once you have successfully installed QEMU on your
system. The QEMU client will be launched by running the /usr/bin/qemu-system-arm binary. This
binary needs root permissions in order to be executed. You can run this binary with sudo by editing
/etc/sudoers. Using sudo is the most secure option if you have multiple users on your system. If you

http://slackware.uk/slackwarearm/boardsupport/qemu/slackwarearm-current/helper-scripts/
https://slackbuilds.org/howto/
http://slackbuilds.org/repository/14.2/development/device-tree-compiler/
http://slackbuilds.org/repository/14.2/development/device-tree-compiler/
http://slackbuilds.org/repository/14.2/system/qemu/

Last
update:
2021/03/28
12:51
(UTC)

howtos:hardware:arm:qemu_support_in_slackware_arm https://docs.slackware.com/howtos:hardware:arm:qemu_support_in_slackware_arm

https://docs.slackware.com/ Printed on 2024/03/18 21:48 (UTC)

are the only user on your system then setting the setuid permission as root is sufficient. Adjusting
these permissions will allow a normal user to configure and boot the QEMU guest without logging in
as root.

Setting the setuid root permission requires that you log in as root. As root execute the following
commands:

chmod +s /usr/bin/qemu-system-arm

If you plan to configure QEMU to use a network bridge, you also need to set the setuid root permission
for /sbin/ifconfig and /sbin/brctl.

chmod +s /sbin/{ifconfig,brctl}

Create QEMU Disk Image

Prior to booting the Slackware ARM installer in QEMU, you must create a disk image that acts as an
emulated SD Card. This disk image is used to emulate the MMC controller in Slackware ARM. Earlier
you copied the Slackware ARM helper scripts to /slackwarearm. Within this directory there is a script,
makeimg. This script creates a 15GB disk image automatically in /slackwarearm when it is executed.
Initially all you need to do is run this script.

Switch to the directory where you copied the helper scripts and execute makeimg:

cd /slackwarearm
./makeimg

Be aware that once you have installed Slackware ARM onto this disk image you must
move it to a different directory for storage, or you risk it being destroyed when
makeimg is executed at a later time.

QEMU Network Settings

This section covers the process of setting up QEMU guest networking. Network Address Translation
mode (NAT) is the recommended way to get a functional network in QEMU guests. You can also use a
bridged mode network. NAT mode does not allow direct access to the Slackware x86 host's physical
network and bridged mode does. It is best to use bridged mode if you plan on doing any more
advanced network operations that require full access to the host and the host's physical network.
Most users will want to use NAT mode. As a result, Bridged mode will not be detailed here.

There are many different ways to configure QEMU guest networking. This document will only cover
the QEMU functionality required to boot Slackware ARM. Refer to the QEMU man pages or the QEMU
documentation if you need further explanation.

https://en.wikipedia.org/wiki/Secure_Digital
https://www.qemu.org/documentation/
https://www.qemu.org/documentation/

2024/03/18 21:48 (UTC) 5/9 Qemu Support in Slackware ARM

SlackDocs - https://docs.slackware.com/

Later on when you boot the Slackware ARM installer in QEMU you may need to modify
the txqueuelen for your network interfaces. This is because large Slackware
packages time out while being downloaded from the host. This happens because
QEMU emulation is very slow. The host machine occasionally shuts down the network
socket before large packages (rust, kernel-firmware, etc) finish being copied to the
emulated SD Card. Setting the txqueuelen to 10000 for all network interfaces should
be sufficient to prevent this anomaly. The following command seems to resolve this
issue:

ip link set eth0 txqueuelen 10000

Run this command for each network interface actively used by QEMU.

QEMU NAT Mode Networking

NAT mode does not require any additional configuration on the Slackware x86 host machine or in the
QEMU guest machine. Here is a shortened example of a QEMU guest being launched with NAT mode
networking:

cd /slackwarearm
qemu-system-arm -nographic \
 -m 1024 \
 -M vexpress-a9 \
 -smp 4 \
 -k en-us \
 -net nic \
 -net user,restrict=n \
 ..snip..

The -net nic and -net user options enable QEMU to start the Slackware ARM guest with NAT mode
networking enabled. These settings are documented further in both the installer_launch and
disk_launch helper scripts.

With NAT mode enabled, QEMU launches a virtual network of 10.0.2.0/24. The QEMU guest will be
assigned the IP address 10.0.2.15. The guest can access the Slackware x86 host at 10.0.2.2 and the
QEMU DNS server runs at 10.0.2.3. QEMU does not have direct access to the host's Local Area
Network. This means that the QEMU guest isn't assigned a physical IP address by your router DHCP
service. You will not be able to ping the QEMU guest from the host machine but the guest should be
able to ping the host machine at 10.0.2.2. The QEMU guest should be able to access the internet and
communicate with the host machine.

Configure a Web Server to Mirror Slackware ARM

There is a very simple way to share the ARM directory on the host with the ARM guests. Use python
and launch a basic web server like so:

Last
update:
2021/03/28
12:51
(UTC)

howtos:hardware:arm:qemu_support_in_slackware_arm https://docs.slackware.com/howtos:hardware:arm:qemu_support_in_slackware_arm

https://docs.slackware.com/ Printed on 2024/03/18 21:48 (UTC)

 cd /slackwarearm && python -m SimpleHTTPServer

The URL pointing to the mirror depends on the directory structure you used to store Slackwarearm on
the qemu host. The directory /slackwarearm/$SLACKREL was used earlier in this guide. If you have
mirrored slackwarearm-current, you would point your web browser at:
http://192.168.1.2:8000/slackwarearm-current/.

For a production environment, the Apache Web server (httpd on Slackware) may be more desirable.
Further directions to use Apache can be found here.

Alternatively, use a mirror on the internet if you have too much difficulty configuring your own mirror.

Install Slackware ARM

I will assume that you are now in X Windows, running as your normal user account, and that you
followed the steps outlined earlier in this document. As stated earlier, QEMU runs extremely slow
when emulating the ARM architecture. Depending on your hardware set up it may take several hours
or more for the Slackware installer to copy all packages to the emulated disk. If the Slackware
installer appears to be unresponsive, check your system process monitor (top or htop) to see if the
QEMU process is still active. A good sign that QEMU is still active is that a single CPU core is operating
at 100 percent.

The Slackware ARM installer is mostly identical to the Slackware x86 installer. There is no learning
curve to install Slackware ARM if you have installed Slackware before.

Booting the Installer

In order to boot the installer you will need to configure and execute the installer_launch script
within a terminal window.

cd /slackwarearm
./installer_launch

The installer_launch script can be found here.

You will see some warnings from QEMU about being unable to open audio and video devices. Those
warnings can safely be ignored. Next you will see the Linux kernel boot messages and eventually the
installer asking about what key map you want to use. Once you select your key map and log in to the
system you will notice that the installer obtains an IP address via DHCP. The DHCP assigned IP
address and resulting network configuration relies heavily on how you set up your networking on the
host machine. If QEMU does not assign an IP address to the guest, then you need to go back and
verify your network settings are configured appropriately.

http://192.168.1.2:8000/slackwarearm-current/
https://docs.slackware.com/howtos:network_services:setup_apache
http://slackware.uk/slackwarearm/boardsupport/qemu/slackwarearm-current/helper-scripts/installer_launch

2024/03/18 21:48 (UTC) 7/9 Qemu Support in Slackware ARM

SlackDocs - https://docs.slackware.com/

Partitioning

The emulated SD Card created with the makeimg command is a blank image. You will have to
partition this SD Card with the installer. It is best to keep the partition scheme simple in our case. It is
recommended that you create a 200MB swap partition and to allocate the rest of the disk to the root
partition. You can use the fdisk or cfdisk tools to create the partitions.

Example partitioning scheme:

/dev/mmcblk0p1 - 200MB swap
/dev/mmcblk0p2 - the rest of the disc, "Linux" - type 83.

Setup and Configuration

Run the setup command at the shell prompt after you exit the partitioning tool. Make the installer
aware of your swap partition and root partition. It is recommended that you select the ext4 file
system when you format the root partition. Next you will be prompted to select the source media.
Choose option 5, Install from FTP/HTTP sever. Enter the IP address of your Slackware x86 host.
The path to the Apache (httpd) directory is required:

What is the URL of your FTP/HTTP server?

In this case we will use the host IP address, enter the URL address: http://192.168.1.2

What is the Slackware source directory?

This is the directory that is accessible in your web browser. I used: /slackwarearm-current/slackware

Following that, you will be prompted for package selection. Slackware ARM has all of the standard
Slackware packages apart from those which are x86 only. It is highly recommended that you do a full
installation to satisfy all system dependencies. Please be patient, this is the most time consuming
part of the installation process.

After installation has finished, running 'MKFONTDIR AND MKFONTSCALE UPDATE' takes
a long time.

At the Network Setup screen it is best to select the DHCP option. The DHCP option best compliments
QEMU's NAT mode and both bridged mode networking options. The only reason not to select DHCP is
if your physical network uses static IP addressing.

Next you will reach the Window Manager selection for the X Windows server. It is recommended that
you select a light weight window manager, such as Fluxbox or WindowMaker. KDE and Xfce are not
very useful within the QEMU guest due to speed constraints.

Post-Installation

http://192.168.1.2

Last
update:
2021/03/28
12:51
(UTC)

howtos:hardware:arm:qemu_support_in_slackware_arm https://docs.slackware.com/howtos:hardware:arm:qemu_support_in_slackware_arm

https://docs.slackware.com/ Printed on 2024/03/18 21:48 (UTC)

Once you complete the installation process you should drop to a shell prompt to configure the SSH
Daemon. By default, OpenSSH does not allow root to log in with a password. This is a security
concern. You may want to think about this carefully if your device is connected directly to an
untrusted network. It is best to make a user account for remote connections to the SSH service and
escalate privileges locally with “su” or “sudo”. If you wish to use root to log in remotely, follow these
steps:

Opt to drop in to a 'shell' when you exit from the installer1.
At the shell, enter:2.

sed -i 's?^#PermitRootLogin.*?PermitRootLogin yes?g'
/mnt/etc/ssh/sshd_config
poweroff

This completes the installation process of Slackware ARM within QEMU.

Boot Slackware ARM with QEMU

Congratulations for making it this far! The next step is booting into your fresh installation of Slackware
ARM. Locate the disk_launch helper script in /export/armhost and modify it to fit your needs.

cd /slackwarearm
vi disk_launch

This script has a few variables you may want to change.

ROOTFSTYPE - root file system type, ext4 is the default
ROOTFSDEV - location of the root partition within the SD Card image
KEYBOARD - keyboard locale you wish to use, typically the same as what you chose during
installation
NETTYPE - network configuration, NAT mode or bridged mode

The disk_launch script for Slackwarearm-current can be found online, here.

The first boot will take quite a while. This is due to the fact that Slackware will generate the font
cache for the first time. Start up QEMU by executing the disk_launch script.

./disk_launch

Assuming all is well, you can begin using Slackware ARM just as you would any other Slackware
installation.

Slackware ARM Graphical User Interface

Work in Progress

http://ftp.arm.slackware.com/slackwarearm/boardsupport/qemu/slackwarearm-current/helper-scripts/disk_launch

2024/03/18 21:48 (UTC) 9/9 Qemu Support in Slackware ARM

SlackDocs - https://docs.slackware.com/

This section will discuss the positives and negatives around running X Windows, which window
manager or desktop environment to use, and the ways you can start it up.

Sources

Originally written by Stuart Winter
Original source: http://ftp.arm.slackware.com/slackwarearm/boardsupport/qemu/

Modified and Maintained by mralk3

howtos, hardware, arm, user mralk3

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/howtos:hardware:arm:qemu_support_in_slackware_arm

Last update: 2021/03/28 12:51 (UTC)

http://www.slackware.com/~mozes/
http://ftp.arm.slackware.com/slackwarearm/boardsupport/qemu/
https://docs.slackware.com/wiki:user:mralk3
https://docs.slackware.com/tag:howtos
https://docs.slackware.com/tag:hardware?do=showtag&tag=hardware
https://docs.slackware.com/tag:arm?do=showtag&tag=arm
https://docs.slackware.com/tag:user_mralk3?do=showtag&tag=user_mralk3
https://docs.slackware.com/
https://docs.slackware.com/howtos:hardware:arm:qemu_support_in_slackware_arm

	Qemu Support in Slackware ARM
	Last modified (September 2020)
	Who is Slackware ARM in QEMU aimed at?
	Installation Environment Assumptions
	Slackware x86 Host Prerequisites
	Download Slackware ARM
	Populate Slackware ARM Files and Directories
	Install QEMU and device-tree-compiler
	QEMU Permissions
	Create QEMU Disk Image

	QEMU Network Settings
	QEMU NAT Mode Networking
	Configure a Web Server to Mirror Slackware ARM

	Install Slackware ARM
	Booting the Installer
	Partitioning
	Setup and Configuration
	Post-Installation

	Boot Slackware ARM with QEMU
	Slackware ARM Graphical User Interface

	Sources

